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(BLOCK #20 ABSTRACT-continued)

This paper presents an alternate translation paradigm - abstraction
and reimplementation. Using this paradigm, the source program is first
analyzed in order to obtain a programming language independent, abstract
understanding of the computation performed by the program as a whole.
The program is then reimplemented in the target language based on this
understanding. The key to this appraoch is the abstract understanding
obtained. It allows the translator to see the forest for the trees -
benefiting from an appreciation of the global features of the source
program without being distracted by irrelevant details.

Translation via abstraction and reimplementation is one of the goals
of the Programmer's Apprentice project. A translator has been constructed
which translates Cobol programs into Hibol (a very high level, business
data processing language). A compiler has been designed which generates
extremely efficient PDP-II object code for Pascal programs. Currently,
work is proceeding toward the implementation of a general purpose,
knowledge-based translator.
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Program Translation
Via Abstraction and Re implementation

by
Richard C. Waters

Abstract '

Essentially all program translators (both source- to-sourc e translators and corn-
pilers) operate via transliteration and refinement. The source prograin is first
transliterated into the target language on a statemnent by statement basis. Various
refinements are then applied in order to improve the quality of the output. Al-
though acceptable in many situations, this approach is fundamentally limlited in QUJALITY

the quality of the output it can produce. Ini particular, it tends to be insufficiently INSPECTEO

sensitive to global features of the source program and too sensitive to irrelevant 2

local details.
This paper presents an alternate translation paradigm-abstractionl and reim-

plementattion. Using this paradigm, the source program is first analyzed in order to__
obtain a, programin-iig laniguage indepenident, ab~stract understaniding of the cornt- '~

putatiolt performed'( by the programn as a whole. The programn is then reimiplemented
in the target languiage based on this undlerstandliiig. 'r'ite key to this approach is the .E

abstract understanding obtained. It allows the translator to see the forest for the
trees-benefiting from an appreciation of the global features of the source program-
without being distracted by irrelevant dletails.

Translation via abstraction and reimplernentation is one of the goals of the Pro-
grammner's Apprenitice project. A translator has been constructed which translates
Cobol programns inito Ilibol (a very high level. b)usiness data processing language). A
compiler ha~s been designed wvhich generates extremlely efficienit P [) l- I I ob~ject codle
for Pascal programis. Cuirrently, work is proceeding toward the implemntion~ii of
at general pi po.,c. kntowledge-based tranislator.
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-- I, I - Inttroduction

The goal of this paper is to present the idea of translation via alstraction and reimpleinntation and co(mpare it

with the sLtndard approach of trans.llion via transliteration and refinement. In the matii. this is done through a

discussion of the basic ideas behind the two approaches and a discussion of the designs for two translalors based

on abstraction and reimplementation. In addition, the paper presents a detailed dcxcription of an implemented

prototype translator which demonstrates the efficacy of the abstraction and reimplcmentation approach.

The process of program translation takes a program written in some source language and creates an equivalent

program in some target language. The primary goal of translation is to create a syntactically correct program in

the target language which computes the same thing as the source program in more or less the same way. For a

wide %ariet. of source and target languages, satisfying his goal is relatively straightforward.

In addition to the primary goal of correctness, translation typically has one or morc subsidiary goals such as

efficiency or readability of the target program. In general, the most difficult aspect of translation is not producing

correct output. but rather attempting to satisfy these subsidiary goals. The main problem is that t>,pically the

subsidiary goals of translation are at best orthogonal to, and at worst in conflict with, the goals ot the original

author of the source program.

Tlranslations vary widely in quality. An optimal translation would produce the program which the original

authors would have produced had they been writing in the target language in the first place and had they had the
desired subsidiary goals in mind.

The most common example of program translation is compilation - the translation of a program written in a

high level language into machine language. In compilation, the key subsidiary goal is achieving efficiency in the

target program. The %ork on compilers has demonstrated that acceptable efficiency can be obtained. lowever,

there is still a long way to go. Even the best optimizing compilers fall short of the efficiency which programmers

can achieve writing directly in machine language.

Another important application of program translation is source-to-source program translation. In this

situation, a program is translated from a language which may be in sonic way obsolete into another language

where it can be more easily maintained. In source-to-source translation, the key subsidiary goal is achieving

readability (and hence maintainability) of the target program. The use of automatic translation during

maintenance has been severely limited by the fact that readability of the target program is %er. difficult to achieve.

Most current program translators operate by a process w hich could be called translation ta tra rns!jicraon (21nd

refninecnti. In this process. the source program is first transliterated into the target language on a line by line basis

by translating each line in isolation. Various refinements are then applied in order to imro\c the target program

produced. As discussed in Section 11, this process has a number of advantages. Iloweser. it is inheicntl. limited

in tile extent to % hich it can satisfy the subsidiary goals of translation. In partictil.ir. titnslatioi %i tm.inlter.ition

and rclinvlnient tends to he insilfficicntl sensitive to global features of the source progr.iin ind too) sciitPe to

il1.. lc'. it.l d1i5.1 J i M' Itilt, o i C .iii.
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reiml'(tmInIalion. In this process, the source prog-ram i,, first analy/ed in ordier to oblaili a ,hstil.ict descriptilol f '-

the computation being performed. The program is then rcit lplcmented in 1he target Iallgridge based on the

abstract description. The central feature of this approach is the abstraction step. It allows the translator to benefit

from a global understanding of what the source program does. In addition, the abstractIon step deliberately

discards information about detils of the source program which are not relevant to tle translation process.

AlthoutLgh inherently more complex than translation ia transliteration and refinement, translation via abstraction

and reimplemcttation is capable of producing very high quality results.

Sections IV & V present examples of program translators which operate via abstraction and reimplenientation.

The first example translator (Satch 1101) is a prototype system which translates Cobol programs into I libol. ( lihol

is a very high level, non-procedural, business data processing language.) Satch is notable because it produces

extremely readable output. The second example (Cobbler 191) is a proposed compiler which translates Pascd

programs into PI )P- 11 assembler language. Cobbler is notable because it produces extremely efficient output.

Section VI describes efforts within the Programmer's Apprentice project 1281 toward the consiLruction (it'

general purpose, knowledge-based translation system operating via abstraction and reinmplementation. Ii order to

support very high quality translation, this system will have extensive knowledge of how algorithms can be

expressed in the source and target languages. In order to make the system general purpose, this knowledge will be

represented declaratively in a library of algorithm schemas. .ach schema will specify how a class of algorithms

can be rendered in the source or target language.

Section VII discusses other work which is relevant to the idea of translation via abstraction and

reimplcntentation. In particular. research on natural language translation has shown that obtaining a global

understanding of the source text is essential for producing high quality translations.

II - Translation via Transliteration and Refinement

As shown in Fig. 1, translation via transliteration and refinement operates in two steps. The transliteration step

translates the source program on an element by element basis. (The word transliucration (as opposed to

frai htliom) is used to connote the idea of literal translation where each element is translated in isolation without

regard for context.) The output of the transliteration step is expressed either directly in the trget language or in

an intermediate language which is semantically similar to it.

source orogram

% TRANSLITERATION REFINEMENT

target-like intermediate target program

1ig. 1. '1 ranslation via tr msliteration and refinement.

I h, rcltncrmment *icp t,;kcs il, otl pt of ih1c tha ,i. tion step ,1(1 tppik- %,lrlotls .ot, r', , g
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-,.. tihe eflici cy of the c.ode io duced. I f the iilt,,rnwldilite langulage is,  not) jdlntic.al to) the {arget Ia ngua| ge. thenl the % ,

refinement ,tcp ilo pci lrli, tei (t pically tiivi,dl) ti inSLation froln ilntllmdiatlC to finall form.

i'xAam)h qj IrslaS/criliu,I on Iw R(fcieine u%,

As an example of translati, .ia transliteration and refi ncmnent. consider how this plollll could he used to

translate Fortran 1341 programs into Ada 1371 programs Fig. 2 shows a Fortran program BOUND %hich is Liken -

from the IIM Fortran Scientific Sthroultin1e Package 1351. Fig. 3 shows tile result of the transliteration step of the

translation process. Fig. 4 shows the final result after the refincment step of the translation process.

The program BOUND has six input parameters and Four output parameters. The parameter A is a matrix w'hich

contains a set of observations of a number of variables presumably determined in some experiment. The integer

parameters NO and NV spccift the number of observations and the number of variables respecti ely. (As is

generally the case in the programs in the Scientific Suhroutine Package, although A is logically a matrix, it is

declared to be a vector and all of the index computations are explicit in the program.)

The parameter S is a vector of length NO. The vector S selects the obsersations which should be considered by

the program BOUND. An observation J is considered only if S (J) is non-zero.

The parameters BLO and BH I are vectors of length NV. For each variable, these vectors specify lower and upper

bounds respectively for the observation values. The integer parameter IER is used to retuin an error code. If

BLO( I )>BH1 ( I ) for any I then IER is set to one and computation is aborted, otherwise it is set to zero.

The parameters UNDER. BETW. and OVER are also vectors of length NV. For each variable I, the program BOUND

counts how many of the selected observations are tinder BLO( I ), how many are between BLOC I ) and BHI ( I)

inclusive, and how many are over BHI(1). These counts are stored in the variables UNDER. BETW. and OVER

respectively which are the principal outputs of the program BOUND.

'..5-
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SUBROUTINE BOUND(A,SBLO.BHIUNDER,BETWOVFRNO,NVIER)
DIMENSION A(1).S(1),BLO(1),BiHI(1) ,UNDER(i).BETW(l),OVER(1)
IER = 0
DO 10 I = 1, NV
IF (BLO(1)-BHI)) 10,10,11

11 IER = 1
GO TO 12

10 CONTINUE
DO 1 K = 1, NV
UNDER(K) 0.0
BETW(K) 0.0

1 OVER(K) = 0.0
DO 8 J = 1, NO
IJ = J-NO
IF (S(J)) 2.8,2

2 DO 7 1 = 1. NV
IJ = IJ+NO
IF (A(IJ)-BLO(I)) 5.3.3

3 IF (A(IJ)-BHI(I)) 4.4,6
4 BETW(I) = BETW(I)+I.O

GO TO 7
5 UNDER(I) UNDER(I)+1.0

GO TO 7
6 OVER(I) = OVER(I)+1.O
7 CONTINUE
8 CONTINUE

12 RETURN
END

Fig. 2. The Fortran program BOUND.

Thc transliteration process is illustrated by Fig. 3. Fach part of the program is tianslated locally. The Fortran

parameters are all turned into "in out" parameters of appropriate types in the Ada program. ley arc gicn the

mode "in out" because every Fortran parameter can potentially be both an input value and an output value. The

Fortran assignment statements are converted into equivalent Ada assignments. This requires very little change

because Fortran is essentially a subset of Ada when it comes to arithmetic expressions and assignment statements.

Fortran arithmetic IFs are expanded into equi.alent Ada "if then else" statements branching to the

appropriate labels. Arithmetic IFs where two of the labels are the same are treated as special cases in order to

avoid the need for temporary variables. Each Fortran DO is expanded into an equivalent Ada "loop". The Ada

"for" construct cannot be used because Ada "for" tests for ernmination at the top of the loop while Fortran DO

tests for tennination at the bottom of the loop. -ortran CONTINUE, RETURN and GO TO are turncd into Ada

"nul l", "return", and "goto" respectively, [he only aspect oftlhe transliteration which is not totally local i, that

the -ortran program has to he scanned in order to determine what variables are used in the program Co that

appropriate variahle declarations can he inserted at the beginning of the Ada program.

...- ,..:-
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type VECTOR is array (INIEGER range >) of REAL;

procedure BOUND(AS,BLO.BHI.UNDER.BETW,OVER: in out VECTOR;

NO,NV,ILR: in out INTEGER) is

I,IJJ,K: INIEGER;
begin

IER 0;
I : ;
loop;

if BLO(1)-BH[([)(=O.O then goto LIO;

else goto L11;
end if;

<<Lii>> IER := 1;
goto L12:

<<LlO>> null;
I : 1+1 ;
exit when I>NV;

end loop;
K := 1;
loop

UNDER(K) 0.0; o

BETW(K) 0.0; 
z

<<Li>> OVER(K) 0.0;
K := K+I;
exit when K>NV;

end loop;J : = 1 ; ,.
loop

IJ := J-NO;
if S(J)=O.O then goto LB;
else goto L2;
end if

<<L2>> I := 1;
loop

IJ := IJ+NO;
if A(IJ)-BLO(f)<O.O then goto L5;

else goto L3;
end if;

<<L3>> if A(IJ)-BHI(I)<=O.O then goto L4;

else goto L6;
end if;

<<L4>> BETW(I) BETW(I)+I.0;
goto L7;

<<L5>> UNDER(I) UNDER(I)+1.0;
goto L7;

<<L6>> OVER(): OVER(I)+i.0;
<<L7>> null;

I := I+i; 
-;

exit when I>NV;
end loop;

<<L8) null;..
j :- J+1;

exit when J>NO;
end loop;

<<L2>> return;
end BOUND;

Fig. 3. A transliteraton of ig 2 into Ada.

7.,.-.--
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As is typically die case with translitcration, the progran in Fig. 3. Althmigh correct, does not do a good job of'

satisfying the suhsidiary goals of translation (in this case readability). IFig. 4 shows the final rcilt after lhe

refincernnt step of the translation process.

type VECTOR is array (INTEGER range 0) of REAL;

procedure BOUND(AS,BLO,BHI: VECTOR;
UNDER,BETW,OVER: in out VECTOR;
NO,NV: INTEGER; IER: out INTEGER) is

I,IJ,JK: INTEGER;
begin

IER 0= ;
I := 1
loop

if BLO(I)-BHI(I)<=0.0 then goto LIO; end if;
IER := 1;
return;

<<LI>> I := 1+1;
exit when I>NV;

end loop;
K := 1;
loop;

UNDER(K) 0.0;
BETW(K) : 0.0;
OVER(K) 0.0;
K := K+1;
exit when K>NV;

end loop;
J := I
loop;

IJ := J-NO;
if S(J)=O.O then goto L8; end if;
I := 1;
loop;

IJ := IJ+NO;
if A(IJ)-BLO(I)<O.O then goto -5; end if;
if A(IJ)-BHI(I)>O.O then goto L6; end if;
BETW(I) BETW(1)+1.0;
goto L7;

<<L5>> UNDER(I) := UNDER(I)+1.0;
goto L7;

<<L6>> OVER(I) OVER(I)+1.0;
<<L7>> I := I+1;

exit when I>NV;
end loop;

<<L8>) J := J+l;
exit when J>NO;

end loop;
end BOUND;

Fig. 4. A refined transliteration of Fig 2 into Ada.

V ig. 4 is derived from Fig. 3 by applying a number of correctncss-preser\ing transformations. Complex
"i f then el se" stitements which have clauscs which hranch to the next statement are simplified to remove these,<..

clauses. Ihc branch to a "return" statement is rcplmccd hy a "return" sttement. I Innecessm\ "nul 1'

' "return" \Ilc lIllt. 1i ld hkl e r('r¢ fl\kl. l'ed ([" lix jl i' - i !l it 1lp.i1luell'I" the 114' C

" " ,t' e ll Jill, i ' 110 , C " " if," t ', ill{ I I .
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ptpurci, ynhtactic way by notinlg that parameters which ate never assigned to cannot he "out" and parotlers

which are never read cannot be "i n".

'(here are a number oftr:tnsfortltatrions Which could in principle have becel applied lo tie prograthat bich have

not been. For example, the computation inVolVitlg UNDER, BE rW, and OVER could be rearrange tit one large

"if then else". However, in keeping with the kinds of refinements typically supported by source-to-source

translators (see Section VII), two criteria were used in order to decide which refinements to perform. I[irst, no

support was provided for transforrmations which require either control flow or data flow analy,;is of the program.

This riles out transformations like the one suggested above.

Second. the main emphasis was placed on transformations which only look at an adjacent pair of statements.

'[ he only transforniation which is more complicated than this is the one which refines the mode of the parameters.

This transformation has to scan the program in order to determine which parameter-; are read and assigned.

Howcer, it does not do an actual data flow analysis. If it did, it would reali/c that UNDER, BETW, and OVER arc

actually "out" parameters and not "in out" parameters since they cannot be read until after they have bcen

assigned.

Fig. 4 is readable, but still not as good as one would like. In partictular, it fals far short of the goal of

producing the program the programmers would have produced had they been writing in Ada - it is a

Fortran-style Ada program instead of an Ada-style Ada program. As will be discussed in Section III, better

translations of Fig. 2 can be achieved by means of translation via abstraction and reimplementation.

Figs. 3 & 4 are not the output of any particular translator. Rather, they are hypothetical examples intended to

illustrate the process of transliteration and refinement. However, it is not clear that any existing source-to-source

translator produces output which is significantly better than Fig. 4 (see Section VII).

Advantages of Transliteration and Refinement

Translation via transliteration and refinement has several advantages. Most importantly, it uses a divide and

conquer strategy in order to satisfy the goals of translation. 'The basic goal of obtaining a correct translation is

achiexed by the transliteration step. The refinement step need only guarantee that it preserves this correctness.

lhe subsidiary goals of the translation (e.g., efficiency or readability) are achieved by tie refinement step. The

transliteration step is greatly simplified by not having to worry about the subsidiary goals.

Another advantage is that the localized nature of the transliteration step makes it easy to encode the basic

knowledge needed for translation. This knowledge is economically represented by tating how each of the

constructs in the source language should be converted into equivalent constructs in the target language. The -

tranliteration step need not have any knowledge about how special combinations of source constructs can be

represented as special combinations of target constructs. ([his latter kind of knowledge is the province of the

refinement step which presumably knows how to fine tune cumbersome combinations of target constructs.)

"t IN d ilnt.,"C of rIYi,,liiol xiI ranslitel;tinn .md refinement is th1t it makcs it Cisy (o conslluct fntamlies

1 ,., 1 1 -1, ' -1 , ..- 1-" l- " ..-...-.... -, ...... I,-. .. ~. c%
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might constltct a family ol comnpilcrs which compile variou high lccl langtiuiais i1to 11hC s,,1nC IIIhliic Il. go.igc d . '

and w'hich share the same refinement step.

Transliteralion Is Not Alvayv Practical

Although it works satisfactorily in many situations, translation %ia transliteration and refinement has some

fundamental disadvantages. To begin with, it assumes that transliteration is practical. 'Ihis in turn depends on the

assumption that each of the source language constructs can be individually translated into targc, lainagie

constructs in a practical way. Unfortunately, this is not always the case.

The main way in which transliteration can be blocked is that the source language may support a primitixe

construct which is not supported by the target language. For example, consider translating from a languagc which

supports GOTOs into a language which does not, or from a language which supports multiple assignments to a1

variable into a functional language which does not. In the case of Fortran and Ada, consider the fact that Ada has

nothing which is equivalent to the Fortran EQUIVALENCE statement.

The primary source of incompleteness in current translators is primitive constructs which canmnt bc

transliterated. Current translators typically just ignore non-transliteratable constructs. either refusing to proce',

source programs which contain them or copying them unchanged from the source to the target. Human

intervention is required either to remove them from the source or to fix them up in the target.

A second way in which transliteration can be blocked is that the source and target languages ma naNe

constructs which, although they correspond closely, differ in significant semantic details. Most of the timn these

details may not matter for translation. However, when they matter they are liable to matter a lot. For example,

consider translating into a language which forces complex data structures to be copied when they are assigned to a

variable from a language which does not, or between languages which differ in their variable scoping rules. In the

case of Fortran and Ada, consider the fact that vector arguments to Fortran subroutines arc passed by reference

while Ada specifies that it is undefined whether or not vector arguments will be copied or passed by reference.

The primary source of incorrectness in current translators is constructs which can be transliterated

straightforwardly most of the time but only with great difficultly (or not at all) in certain hard-to-detect situations.

Current translators typically just use the straightforward transliteration all of the time without giving any

indication that there might be a problem. (For example, the transliteration in Fig. 3 blindly assumes that it does

not matter how the vector parameters get passed.) 7uman intervention is required in order to correct any

problems which arise in the target program produced.

Tran.shlitration Complicates Refinement

A second fundamental disadvantage of translation via transliteration and refinement is an unintended

bhproduct of its greatest advantage. The principal virtue of ie transliteration ind refinement approach is thit it ".

Siniplifies tie pro blem of satisfying the priinar ,r iy il ofi ti.isJAtim (i.e.. corecti,',,) b.\ fctt iig o il tit, plhhlii

,+l "- +l ', + 0 1 l . 'tlh '-,,, l 11\ (d:, l' w I I fv-1 , 11'U l t *l t l I, , + , J ir L II , i, I n ! +' :', 11%+ , !h, k l it t,,k t(d
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".*", sasfving tile subsidiary goal,,. Ibllis is particularly u ftrtuILate silcc thle sub,,idiary g l,,, are usuaill, hardei to

,atifv hn the primary goal.

The basic reason why translation via transliteration and refinement complicates the task of s.tisiring the

subsidiary goals of translatiou is that typically the process of transliteration does not merely ignore tile subsidiary

goals, it works against them. Simply put, whether or not the original source program is good from the point of

iew, of the subsidiary goals of the translation, the Output of the transliteration step is almost always guaranteed to

he bad from this point of view.

The most obvious way in which transliteration makes things difficult for later refinement is that, more often

than not, the transliteration of a given construct in the source language requires tile use of a circtulocItion in the

target language. The only time when this can be completely avoided is when the target language possess a

SctMnticallV identical construct. Fxamples of both of these cases can be seen in Fig. 3. he DO loops in the

Fortran program are converted into cumbersome "loop" statements in the Ada program. In contrast, the

assteOnent statements remain essentially unchanged.

A more subtle way in which transliteration makes things difficult for later refinement is that it tends to obscure

the key features of the algorithm implemented by the program being translated. Transliteration does this through

both camouflage and the creation of decoys. The mass of circumlocutions produced by transliteration act as

camouflage hiding the key features. l)ccoys (features which are prominent but actually unimportant) are created

S because tie code produced is sensitive to unimportant dewails of the source. For example. Fig. 3 would have

looked quite different if the Fortran programmer had used logical 1s instead of arithmetic Fs. A kind of

indirect camouflage is produced due to the fact that the transliteration step is insensitive to global considerations.

Transliteration typically renders a given construct in exactly the same way even if the context would suggest that it

should be translated differently. For example, all of the parameters are given the mode "in out" in Fig. 3

whether or not this is actually nccessary given the way they are used.

A final way in which transliteration makes things difficult for later refinement is that useful information about

the source program can get lost. As an example of this, consider translating from a language (such as Ada) where

the order of valuation of tie arguments of a function call is undefined to a language where the order is defined.

In this situation. straightforward transliteration will define an evaluation order and thereby discard the

information that many cvaluation orders are equally acceptable. illis loss of information makes it hard for the

retincment step to apply transformations which are not applicable to the chosen evaluation order but which are

applicable to one of the esalitat ion orders which was not chosen.

,4pplicabiliy ()J'Trmslitcration and Refinement

The primary requirement for the applicability of translation via transliteration and refinement is that

transliteration must be practical. For this to be the case, the target language ot Mst support all of the prin',iti e

C0111-.tr ts ,ll)portcd by the -,)'lrce lunui.ree. In Peieral. this itmplies thait the target l,,ta inmost lIe at a Io1, er

1. .. V, ,I + "' ..' -l ' 'i,-,. -. -. A pC' ',,11'. r l '-" 1. '.\%h"- . ( I' 11 tl ill i t1 . I

.""" -""""- - "" - """'.--"'-' - - -""""- " '-" ' .' - '" ' -- " '- '" " . "--'," ' -' : - --"',-""- . """ " """"" " " " -" "



hbt.:%,ce. the source anid he intcrnediaie langi,ic I, I. . ii pi iii; ,own i ird

I risillulin via l iterl i[ .- ctin 'Ind ficlicilieni 1 . Imh t .1ppht'I . t ;iI 11i lm l , .. in, pr11rtrl \c

colnsluoct cl xpi¢'ed . il ,CliInC labe gr. u i t. illt--,oltcc .I, ln l u 111 1(t

the input kinguage and/or adii possibly incorrect tlilI,ihtios im ii ici t, ll , lrt prlicti(oal.

A second limitation oil the applicability ot'translation \iaislitei.ion ind i .lorment I, that refinement is in

in herntl difficult task which transliteration makes niorc' di liI It. As a reuI tI[. th I I rin %I ic ra in alnd refincincrnt

approach is most applicable in SiLuatilonS whec the stlbid ir goal ofi r.inslitiol ire not too Stii ugent.

Translitcration and rcfinement works well in a sutraightforiird compiler %herc rcadahility 01 th. Output is not

an issue and only moderate efficiency is required in the oultpUt code. In order to ,chic\e significantly higher

levels of efficiency in the output code, optimii.ing compilers exlcnd al Cln 1rmloLS amioun t oeffort o l refinement.

III - Translation via Abstraction and Reimplementation

As shown in F ig. 5, translation via abstraction and reinplientation operates in two steps. The abstraction

step performs a global analysis of the source program. The goal of this analysis is to obtain an understanding of

the algorithms being used by the program. The abstract description highlights the essential features of these

algorithms while deliberately throwing away information about unimportant features of the program.

abstract description

ABSTRACTIONZ k REIMPLEMENTATION
source proora target program

Fig. 5. Translation via abstraction and reimplcmentation.

The rcimplcmentation step takes the abstract description produced by the abstraction step and creates a

prograim in the target language which implements this description. In order ito simplify this task, the abstract

description is designed so that it contains exactly the right kind of inforation needed in order to guide the

rcimplementation process.

I he basic difference between translation via transliteration and refinement and translation \ ia ahstraction and

rcimplementation can be seen by comparing the shapes of Figs. I & 5. The transliteration and refinu'cint

aipproach translates directly to the target language. In contrast, the abstraction and reimplementation approach

first translates the source program up to a very high levl description and then tianslates this description do%n to .

the target language.

I ike translation via transliteration and refinement, translation ia a-.straction and rcimplcmntation uses a

di idc a nd conquer st rategy to attack the translation task. tioweker, it divides the translation task diflercntlv. I he

lia.I Itcattr.1lon and refincnlcnt approach separates the prlolein of satisfying the primiry goal of train.larion frni ctwi "

i chlrh ITi ,t s1ii1i0lvii Ih " tibidi.frv oils otf ti l..lti i. In uonrLt't. htl .h iji n . d rcimndl';.i,.t

",' i, tP -" ! ll~ l,' ! il( \'. t+ ". q t.;t ', ,tl , I T :. t .' t it i T ... 1 ' I , ,'l li ! i. I I :l ,I;.t' I
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As an example of translaIion ii abstraction and reimplementation. consider how this ;Iplp ;ich could be used

to translate the I ortran program in Fig. 2 into Ada. The first step is to Obtain an abstract description of the

computation in Fig. 2. Fig. 6 shows the kc elenents of such an abstract description.

Fig. 6 is divided into three parts. The first part lists the parameters of the program BOUND and their types as

specified in the original Fortran program. (My convention, the Scientific Subroutine Package uses the dimension

specification V( 1) to specify it vector of unknown length rather than a vector of length one.) A complete data

flow analysis of the program is used ii order to determine which parameters are "in" and which are "out". IhisI

analysis reveals that UNDER. BETW, and OVER are never read before they are written and are therefore "out"

parameters.

The second part of Fig. 6 lists a number of constraints which must be satisfied in order for the program BOUND

to produce reasonable results. The first seven constraints state that the ranges of the various %ector parameters

must be large enough to prexent referencing menory locations outside of the vectors. These constraints are

determined by looking at the largest values which the various index variables in the program can reach.

The last two constraints specif that the parameters NO and NV must be positive and therefore that the vector

parameters must have positive extent. These are particularly interesting constraints because they imply that Ada

"for" loops can be used when translating the program. The constraints follow from the obseration that a

Fortran DO loop which enumerates the elements of an array does not operate correctly when giver an array of zero

extent. The problem is that the body of a Fortran 00 loop is always executed at least once, even if the limits

placed on the DO variable suggest that zero executions would be more appropriate. (This feature of DO is

occasionally used in a constructive way by Fortran DO loops which do not enumerate the elements of arrays.)

The third part of Fig. 6 describes the computation performed by the program. The first two lines specify that

die program checks to see that every element of BLO is less than or equal to die corresponding element of BHI. If

this is true then IER is set to zero. Otherwise, I[ER is set to one and the program is terminated.

The remainder of Fig. 6 describes the main computation performed by the program BOUND in terms of

recurrence equations. The main body of the program is a doubly nested loop iterating over the index variables J

and I. The various evaluations of the body of the inner loop can be ieferred to in terms of the corresponding

alues of the index variables. [hc notation X is used to refer to the value of the 'ariablc X at the end of the

evaluation of the inner loop body during which the outer loop index has the %alue in and the inner loop index has

the %alue n. "[he recurrence equations specify how variable values corresponding to a gi\en e\aluation of the

inner loop body are computed from %alues corresponding to earlier caluations. Ihe recurrence equations are

derived by inspecting the data flow in the loops As part of his process, die middle loop in the Fortran code is

revealed to be part of the initiali/ation for the main loop in the program.

I he fact that iL. 0 is sho n iil a textual forin is not intended to impy that the .ibstrict description would

* , W , •1A 14
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PARAMETERS:
in A,S,BLO,BHI: vector of real

out UNDER,BETW,OVER: vector of real
in NONV: integer

* out IER: integer

CONSTRAINTS:
A'RANGED1. .NV*NO, S'RANGEJ1. .NO,
BLO-RANGEDI. .NV, BHI'RANGED1. .NV,
UNDERRANGED1. .NV. BETW-RANGED1. .NV, OVER RANGEDI. NV,
NO 1, NV> 1

* COMPUTATION:
if (V IC1. .NV BLO(I)K5BHI(I)) then IER=O

else IER=1 A computation is aborted
* The main computation is a doubly nested loop
*The outer index (first subscript) counts from I to NO

The inner index (second subscript) counts from I to NV
The variables assigned within the loops have the following values:

V jElI. .NO, iE1i. .NV. KE1. NV
I Jjo=j-NO
I Jj~i= I Jj,i1+ NO

UNDER(W) 0 j,=0.0

if Ki A S(j)*O.O A A( IJjj)<BLO0i)

then UNDER( K )j~i1.0+UNDER(K)-i,i
else UNDER (K)j,1:UNDER(K)j.l,j

BETW(K) gj=O.O

if K=i A S(j)*O.O A BLO(i) A(IJji) 5BHI(i)

then BEfW(K)jiN1.O+BETW(K)j-i,i
else BETW(K)ji=BETW(K)jiij

N OVER(K)O,i=0.0

if K=i A S(j)*0.O A BHI(i)<A(IJj~i)

then OVER (K)j,i= 1.O+OVER (K)j-i,i
else OVER(K)jjNOVER(K)ji1, 1

Fig. 6. An abstract description of Fig. 2.

Biased on thc abstract description in Fig. 6, it is a straightforward matter to create a quality translation of the

program BOUND into Ada as shown in Fig. 7. The parameters are made parameters in the code with the specified

* types. TVhe recurrence equations map directly into a triply nested loop. Transformations similar to those used by

anl optimizing compiler can be used to get rid of the unnecessary innermost loop over K and to move dhe test

N SW ) / =0 .0 out to the outermost loop since it is an invariant in the inner loop.

A comparison of Hg. 7 with Fig. 4 shows that the translation in Fig. 7 is superior in several respects. Most

riotahix, the parameters have all been given the correct modes: labels and "goto" statements ha'.e been

eliiinaited in favor of complex " if then el se" statements: and "f or" loops have been used.

Sonie of the improvements which are seen in Fig. 7 could have been achieved in Fig. 4 if local refinement had

been ipl'icd inr acig!ressi' ely. For example. local ranSformiations probhly coulId have been used to combhinte

Ow ,1111flo "ifC then 1 se'' stllens i Le ithl the N1.i10c i ltt *I kllo n dierr inl vidki t0 OuCite 1(h
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"if then else" statements shown ii t ig. 7.

Howcvcr. improvements such as determining the pnper modcs for the parameters and utilizing "for" loops

depend critically on an understanding of the program as a whole. These changes cannot be made until after a

global analysis of the program has determined that the changes are valid.

type VECTOR is array (INTEGER range >) of REAL;

procedure BOUND(A.S.BLO.BHI: VECTOR;
UNDERBETWOVER: out VECTOR;
NO,NV: INTEGER; IER: out INTEGER) is

I,IJ,J.K: INTEGER;

begin
IER := 0;
for I in 1. NV loop

if BLO(I)>BHI(I) then IER 1; return; end if;
end loop;
for K in 1. .NV loop

UNDER(K) 0.0;
BETW(K) 0.0;
OVER(K) : 0.0;

end loop;
for J in 1. NO loop

if S(J)/=O0 then
IJ := J-NO;
for I in I .NV loop

.IJ := IJ+NO;
if A(IJ)<BLO(I) then UNDER(I) UNDER(I)+1.O;
elsif BH[(I)<A(IJ) then OVER(I) :z OVER(I)+1.O;
else BETW() := BETW(I)+1.0;
end if;

end loop;
end if;

end loop;
end BOUND:

Fig. 7. A translation of Fig 2 into Ada based on Fig. 6.

While Fig. 7 is a good translation of Fig. 2 into Ada, it is still far from optimal. Appropriate Ada-style

constructs have been used, however, the result is still essentially a Fortran-style program. In particular, the fact

that A is really a matrix, but is declared to be a vector and the fact that the various vector parameters may have

ranges which are larger than the ranges indicated by the parameters NO and NV is in the style of the Fortran

Scientific Subroutine Package. but, it is not in the style of Ada.

Fig. 7 is shown as it is because it is just about the best translation which can be achieved if the parameters and

their types are required to remain the same as in the Fortran program. In addition, it illustrates the kind of
translation which can be achieved by using an abstract representation which is only moderately abstract.

Example , 'Increased A bsiraclion

Figs. 8 & 9 show a translation of the program BOUND into Ada which is better than the one shown in Fig. 7 and

flit ahi'.frjg{ dc('.ripli ll { , whi(h if is based. lherc ;ie tl,, f lindame i lal ways in which the ti.i ilSItioii slhW lw ill

,h(..... ............... l,- (1 C il ill 1 1...1q... . 8. & 11, th h Va BOUND
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die programs which call it arc being translated together. This opens tip two flew avenues of' attack onl the

translation problem. The programs which Call BOUND canl be inspcctcd in order to obtain additional in fonnation

about BOUND. '[he interface to the program BOUND can be altered in order to render dhe progr.amn more

aesthetically in Ada.

In Fig. 8 it is assumed that an analysis of the programs which call BOUND show., that BOUND is Only called with

vectors which have the exact sizes indicated by the paramecter-s NO and NV. [his makes it possible to tighlten uip the

constraints in the description and to eliminate all mention of thc variables No and NV in favor Of using the Ada

array attribute "' RANGE" applied to the parameters.

'[he second fundamental difference between Figs. 8 & 9 and Figs. 6 & 7 is that Fig. 8 is significantly morc

abstract than Fig. 6. [he computations b~eing performed are described in terms Of their net efflects. '[he

computations involving UNDER, BE TW. and OVER are described ats Computing a count of elements of A which have

certain properties. '[he variable S is described as a vector of flags which are tested. A is described directly as a

matrix, and no mention is made of the variable Ii. '[he comrputation involving IER is summarized by stating that

the computation is aborted and an error signalled if the first constraint is violated. No mention is made of how

this might be done.

LOGICAL INPUTS: '

A matrix of real
S vector of flag
BLOBHI vector of real

LOGICAL OUTPUTS:
UNDER,BETWOVER vector of count
error signaled (and computation aborted) if constraint (1) is violated

CONSTRAINTS:
(1) V IEBLO'RANGE BLO(I):5BHI(I)
(2) A'RANGE(1)=BLO'RANGE=BHI'RANGE-UNDER'RANGE=BETW'RANGE=OVER'RANGE
(3) A'RANGE(2)-S'RANGE

COMPUTATION:
V IEUNDER'RANGE

UNDER(I) z count-of (JES'RANGE S (J) A A(I,J)<BLO(I)1
V IEBETW'RANGE

BETW(I) z count-of (JES'RANGE S(J) A BLO(I) 5A(l.J):5BH1(I)1
V IEOVER'RANGE

OVER(I = count-of {JES'RANGE IS(J) A BHI(I)<A(I,J)l

Fig. 8. A more abstract description of Fig. 2.

The key to the increase in abstraction in Fig. 8 is the ability to recognize the net effects of a computation. 'n'is

in turn depends on the abstraction component having a significant amount of knowledge about what kinds of

comiputamtions can be performed. For example, it can presuimably recogni/e that the recurrence equations inl Fig. 6

Compute counts and that the compuitation involving the variable IJ con'erts matrix indices to 'hector ifidikces.

Similarly, it can recogni/e that the computation involving the variable IER reflects the standard way that error -

conditIions are sit, lied inl the [oiltrill Sciontific Stihrotitine I ibraiy.

('.11. w. S, 11ik,m:ImjIliIiiiT) .lj (,Ill JiIlodL~ 11 uumicti hkcumcv p;~ ' il ('r COu F11 9u ) 11111 111n lc e
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shown in Iig. 7 because it ha, fewer restrictions placed on it. It can choose better paiaimeter id better 1 pes

becAuse the abract description does not require that the parameters and t pes lie the same as in thc H.ortrn.

program. It is free to implement the error signalling uing stindard Ada methCds -- i.c., hy raiking ,l CXCeptiol

instead of returning an error value which has to be explicitly checked by the caller. I)ue to the stronger

constraints on the length of the vectors, array literals can bc used to initialie the vectors UNDER, BE TW, and OVER k

instead of a loop.

In some situations, die added freedom does not cause any change in the translation. For example, the

rcimplcrnentation step could have computed the counts in several different ways. However, none of thcse

methods would have been any better than the one shown in Fig. 7, so the same method was used inl Fig. 9.

'hcre is a price which has to he payed in order to get the improved translation shown in Fig. 9. Analysis is

made more complicated by the need to recognize the net effects of the conputation being performed. In

addition, reimplementation is made more complicated because there are more implementation decisions which

have to be made.
.1

type VECTOR is array (INTEGER range <>) of REAL;
type BOOLS is array (INTEGER range 0) of BOOLEAN;
type VECT is array (INTEGER range 0) of INTEGER;
type MATRIX is array (INTEGER range >, INTEGER range <0) of REAL;

procedure BOUND(A: MATRIX; S: BOOLS; BLO,BHI: VECTOR;
UNDER,BETW,OVER: out VECT) is

I,J: INTEGER;
begin

for I in BLO'RANGE loop
if BLO(I)>BHI(I) then raise CONSTRAINT-ERROR. end if;

end loop;
UNDER : (UNDER'RANGE => 0);
BETW (BETW'RANGE => 0);
OVER (OVER'RANGE -> 0);
for J in A'RANGE(2) loop

if S(J) then
for I in A'RANGE(1) loop

if A(I,J)<BLO(I) then UNDER(I) := UNDER(I)+I;
elsif BHI(I)<A(IJ) then OVER(I) := OVER(I)+1;
else BETW(I) :z BETW(I)+I;
end if;

end loop;
end if;

end loop;
end BOUND;

Fig. 9. A translation of Fig 2 into Ada based on Fig. 8.

.4

Figs. 6-9 are not produced by any particular translator. Rather, they are hypothetical eamples intendcd to

illustrate the process of abstraction and reimplementation. In particular. thc demonstrate that increased

abstraction leads to improved translation. In the limit, it is possible to create a translation which compares

" ifv r,mhly with the program the proi ,rminer% would have written had Ihey heen writing ill the target language.

,, -'.,,: ,, .-',," ,_-, , ., ,, ,",," ,,-,+-,K,.,' -- .. ',,,.-' '. '_" .' -, , -;,+ - ...- + " - ,--. .- ". .-- • - , ,- - . , . . + . .
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/l(Id (Jnag'.% of Ahsiraction and Rcumpletmenlalion

'Ihe most important advantage of translation via ahstr,coiil ind reiiipleieintation is that, while t,iiiitioii ia

transliteration and refinement is. in essence, designed to Cailit atc achiic ing the prinr goal1 Of translhtion (I.e..

correctness), translation via abstraction and reiniplcimntation is spccifically designed to lacilittC ach ieiil g the

subsidiary goals of translation. As discussed in Section II, translitcration creates many problems for later

refinement. In contrast, the sole purpose of abstraction is to simplify later rcimplemcntation. Sections IV & V

givc cxtcndcd examples of the way in which abstraction and rcimplcmcntation can cooperate in order to produc

high quality translation.

A second important advantage of translation via abstraction and reimplcmcnltation is that it is not linited by

the practicality of transliteration. As discussed in Section I1, the local nature of transliteration can cauSC it to be

blocked even though overall translation is possible. In contrast, there is no a priori reason for abstraction to c',cr

be blocked since the result of abstraction is not constrained by the target language. Further, reimplementation

need not be blocked as long as overall translation is possible.

A final N irtue of translation via abstraction and reimplementation is that it lends itself to the construction of

f.tbmilies of translators which share components at least as well as translation via transliteration and retincnent if

not better. In this regard, note that designing an abstract representation which is compatible with a diverse set of

target languages is easier then designing a target-like intermediate language which is compatible with them.

I)isadvuntagcs of Absirac lion and Reimplementation

i.ikc translation via transliteration and refinement, translation via abstraction and reimplementation has a

fundamental problem of incompleteness. Unlike transliteration, abstraction and rcimplemcntation are always

possible as long as translation is possible. However, it would not be reasonable to assume that these processes will

always be practical. When they are not, a translator will ha'e to fall back on some other method of translation.

For example, it might use transliteration (or ask for human assistance) in order to translate those parts of a

program which could not be usefully abstracted and/or reimplementcd.

A key issue then is what percentage of a typical source program can be practically abstracted and

rcirnplementcd. This question can only be answered in the context of a particular application. Iloweer. two

gcncral statements can be made. First, any particulai deficienc) in abstraction or rcimplcmentation can bc

rec:tit'ied by adding more knowledge into the abstraction and icimplcnientation modules. Second, the limits of

ahstriction and reimplemcntation are essentiall (rthoginl to the limiLs of transliteration. I hcrefore, att anslator

A hich uscs abstraction and rcimplemcntation and hich falls back on transl eration should alwa s be more

complete than one which uses transliteration alone.

Another disadvantage of the abstraction and reiniplemcmnation approach is that it is more complicated thin

t ir., tiicraition and iliicinciil. All in all. in sit t aiis Mhcic t insliterition is practical and little refinemnlt i,
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-A
translation ia abstraction and reimplementation c;1 succeed in producing high qualitv mutput "here transltion

%ia trlinlitcrition and refincmcnt v ould fail.
I

IV - Satch -Translating from Cobol to Hibol

Faust's Satch systemi 1101 uses abstraction and rcimplcmentation in order to attack a problem which is

particularl) difficult fi translation by transliteration and refinement -- translation from a low leel programming

language to a high lccl programming language. There are two key problems with this kind of translation. First,

transliteration is usually not practical. Second, the subsidiary goal of such a translation is readability which is an

excepionally difficult goal to satisfy well.

In the case of Satch. the source language is Cobol [361 and the target language is Hihol [201. The motivation

behind the translation performed by Satch is the desire to convert pre-existing Cobol programs into a form where

they can be more casily nainttined. The benefits of the translation are illustrated by the faict that the resulting

I libol program can be as much as an order of magnitude shorter than the original Cobol program.

I libol is a special purpose business data processing language. It is a very high level, non-procedural, single

assignment language which is based on the concept of a flow. A flow is a multidimensional aggregate of data

valUes which are indexed by one or more keys. Each Hibol statement specifies how a flow is computed from other

flows. This is done by specifying how a typical element of the output flow is computed from typical elements of

the input flows. An important advantage of Hibol is that both file I/0 and iteration over thc elements of flows is

implicit in a I tbol program and therefore does not have to be explicitly specified by the programmer. Fig. 11

(which will be discussed bclo,) shows an example of a I libol program.

A key aspect of the non-proccddral nature of Ilibol is that there is no explicit control flow in a I-libol program.

The statements in a Htibol program are unordered and there are no flow of control constructs such as conditionals

or loops. As a result of this, direct transliteration from a programming language such as Cobol which has flow of

control constructs to II ibol is not practical.

I:yamplc of S'atch 's Translalion

t-ic,,. 10 & 11 (adaipted from 1101) show an example of a translation performed by Satch. Fig. 10 shows a Cobol

program named PAYROLL. Thi, program reads in a file of records which specify the waige rate for each member of'

a group of employees. I he program computes the gross pay for each employee based on a 40 hour week along

with a count of the employees and the total gross pay for all the employees.

s..... I

-,M
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ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT HOURLY-WAGE-IN ASSIGN TO DA-2301-S-HWI.
SELECT GROSS-PAY-OUT ASSIGN TO DA-2301-S-GPO.

SELECT EMPLOYEE-COUNT-OUT ASSIGN TO DA-2301-S-ECO.

SELECT TOTAL-GROSS-PAY-OUT ASSIGN TO DA-2301-S-TGPO.

DATA DIVISION.
FILE SECTION. %

FD hourly-wage-in
LABEL RECORD IS OMITTED
DATA RECORD IS hourly-wage-rec.

01 hourly-wage-rec.
02 employee-number PICTURE IS 9(g).

02 hourly-wage PICTURE IS 999V90.

FD gross-pay-out
LABEL RECORD IS OMITTED
DATA RECORD IS gross-pay-rec.

01 gross-pay-rec.

02 employee-number PICTURE IS 9(9).

02 gross-pay PICTURE IS 999V99.

FD employee-count-out
LABEL RECORD IS OMITTED
DATA RECORD IS employee-count-rec.

01 employee-count-rea.
02 employee-count PICTURE IS 9(6).

ED total-gross-pay-out
LABEL RECORD IS OMITTED

DATA RECORD IS total-gross-pay-rec.
01 total-gross-pay-rec.

02 total-gross-pay PICTURE IS 9(7)Vgg.
PROCEDURE DIVISION.

initialization SECTION.
MOVE ZERO TO total-gross-pay.
MOVE ZERO TO employee-count.

OPEN INPUT hourly-wage-in.
OPEN OUTPUT gross-pay-out.

mainline SECTION.
READ hourly-wage-in AT END GO TO end-of-Job.

MOVE employee-number OF hourly-wage-rec
TO employee-number OF gross-pay-rec.

MULTIPLY hourly-wage BY 40 GIVING gross-pay.
ADD I TO employee-count.
ADD gross-pay TO total-gross-pay.

WRITE gross-pay-rec.

GO TO mainline.
end-of-job SECTION.

CLOSE hourly-wage-in.
CLOSE gross-pay-out.
OPEN OUTPUT employee-count-out.
WRITE employee-count-rec.

CLOSE employee-count-out.
OPEN OUTPUT total-gross-pay-out.
WRITE total-gross-pay-rec.
CLOSE total-gross-pay-out.
SlOP RUN.

I-1. 10. 1 lie ( -.- I pr-. -rnnI -AYilOI L.
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Fig. 11 shows the I lihol traislatioll which is prodiiced bv Satch. Iike any I libol progrim. dis programl is

divided into two parts which arc closely analogous to the parts of a Cobol program. "Ihc data di% ision of the II ibol

program specifics the data types of the flows (introduced by the kcyword F ILE) used in the program and how

these flows are indexed. The computation division specifies how the output flows are computed from the input

flows. The first line of the computation division specifies that the elements of the flow GROSS-PAY arc computed

by multiplying the elements of the flow HOURLY-WAGE by 40. The second line of the computation division

specifies how to compute the single element flow TOTAL-GROSS-PAY. The operator SUM collapses a dimension of

a flow by adding all of the elements in that dimension together. In an analogous way, the third line of the

computation division specifies how to count the number of employees.

DATA DIVISION
KEY SECTION

KEY EMPLOYEE-NUMBER FIELD TYPE IS NUMBER FIELD LENGTH IS 9
INPUT SECTION

FILE HOURLY-WAGE KEY IS EMPLOYEE-NUMBER
OUTPUT SECTION

FILE GROSS-PAY KEY IS EMPLOYEE-NUMBER
FILE EMPLOYEE-COUNT
FILE TOTAL-GROSS-PAY

COMPUTATION DIVISION
GROSS-PAY IS (HOURLY-WAGE * 40.)
TOTAL-GROSS-PAY IS (SUM OF (HOURLY-WAGE * 40.))
EMPLOYEE-COUNT IS (COUNT OF HOURLY-WAGE)

Fig. 11. Satch's translation of Fig. 10 into Hibol.

Without discussing Figs. 10 & 11 in any more detail, it can be seen that Satch is capable of creating quite good

Hibol translations of Cobol programs. (More complex examples are given in 1101.) Howeer, the translations

produced by Satch are still not optimal. For example, it would be better if Satch were capable of realizing that the

flow TOTAL -GROSS- PAY in Fig. 11 could be computed using the more compact expression (SUM OF GROSS-PAY).

Imp lcnienation of Satch

Like the architecture of any translation system based on abstraction and reimplementation. Satch's architecture

is di\idcd into two basic parts (see Fig. 12). The five modules on the left side of the figure operate together to

create an abstract description of the Cobol program supplied to Satch. The Itibol reimplementation module

creates a I lihol program based on the abstract description. Most of the burden of de translation is carried by the

abstraction modules. This asymmetry is due to the fact that the very high level nature of Hibol allows the abstract

description to be similar to the target language.

"a
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abstract description

ALGOR ITHM HIBOL
IDENTIFICATION/ \ EIMPLEMENTATION

grouped plan Hibol program

GROUPING /EY
/ DETERMINATION

surface plan

PLAN CREATION/

pseudo-Liso parse tree

PARSING/

Cobol program 
,%

Fig. 12. "lhe architecture of Satch.

llic parsing module (implcmented by G. Burke) parses the Cobol program and transliterates it into

pseudo-l.isp. (Lisp [241 was chosen as the output of this module in order to facilitate the use of a pre-existing plan

creation module.) Th. parsing module is implemented in essentially the same way that the transliteration .-

component of a Cobol to Lisp translator operating via transliteration and refinement would be implemented. .

For each file in the Cobol program, the key determination module determines which of the fields of the file act

as keys. Various heuristics could be used to determine this information by looking at the Cobol program.

Itve cr. Satch currently asks the user to specify which fields are kc fields. In ordinary use this would not lead

to an excessive amount of user interaction because key determination only has to be done once for each file even

ifra large number of programs which operate on the files are being translated.

Ihc plan creation module converts the pseudo-lisp output of the parsing module into a programming

langu,,gC independent internal representation called a surface plan. Fig. 13 (adapted from [101) shows a simplified

crsion of the surface plan which Satch creates when operating on the Cobol program PAYROLL shown in Fig. 10.

A plan is similar to a data flow diagram. Computations are represented h boxes (called segments). [he

segments are connected by solid arrows indicating data flow and dashed arrows indicating cotrol fl0W. In the

figure. many of the datz flow arrows have annotations indicating the %ariables the\ correspond r. The names of

the segments represent the operations they pertorm. PLUS adds two numbers. CREAD reads a record from a file.

EOFP deter-nines whether the end of a file has been reached. PI F splits control flow based on \hcthcr or not its %

input is TRUE.

In the interest of brevity, the plan in Fig. 13 has been simplified in several way,... '[he computation of _

EMPLOYEE-COUNT has been omitted. The file open and closc fmctions hive been removed. [xcept for the flile ". * .

HOURI Y-WAGE, the dat a flow corresponding to the \'i)nlls Ole ohocts Ils heen unhilted. [Ih (1,11,. \ I', 10 I ,1-

f' -WA , , t.il d ill *ol 'dcI to Ir'n ti tihk Of I 1, I 1 l lc t l.l'h'.

Apf &
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Plan creation is pcrfonncd using global daw flow and control flow analysis which is similar io the kind of'

analysis which is performed by an optimizing compiler.

__ IW[ PA','ROLL

(0>

a ~jp ------------------------------------------------------------------- 1

CWRII E II
I, 1~GP / /

IHWF

CASE1 CASI.U

PLUS
.OIN

S--TGP GG
i" TIMES

HWF:

p

HW~~~~~H EN HORYWGEGW>GRS-A

I" p O'P1

PIF CREAD

YES ] NO "' F

{l k . . . ..

. .. -- -- --- -- - TG P

[ W-RrTE 2

tlWF

HWF => HOURLY-WAGE FILE-OBJECT TGP => TOTAL-GROSS-PAY
I HW =) HOURLY-WAGE GP =0 GROSS-PAY

~EN => EMPLOYEE-NUMBER

I ,: ,'.. ig. 13. A simplified surface plan for PAYROLL.

w' "~~~~lit,' !,lolling Illo leh ltke tiht mirl: we plan re .p.'0ld2- h the Phl l lt''itotll Ill lhle 'Ind C i' t  
ntolt);

wI ~ ~ ~ p .ph,/, / Iln. A,\ (111, ), 111(1 IO I 1~ (hl111 [ lt S I L )1, 111 lt i tt) wdlyS. I . HN il,'' li+{t
+,
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111t)11 hIerachy of scegentls w~ithin~ scgi'tents, ill oliei ito ngIi i qht the lic srtueot 111e plan. ee tic h

loop,, inl ,th plan aie ideittified and broken dowkn 11110 ihJn Loiponeni parts.

1 12. 14 shows a simiplified ciolped 1p1,11 for the ui l PAYROLL. I.Ike I W. 1.3 tIile Viiiped pl,1in omlits the

fliepn inld close Ifunctiows and sone i'ic h other file ioicr~tOillS. I he I igr is, also simnpl ified in that it dies not

sho k the coiiputatifln whichLKCU occt' %4thin the ariou, s,~.cgits. Unlike FiV. 13 thle gr-ouped planl Show., tile

2(1 tijp,1,a110 Of EMPLOYEE -COUNT.

I he kc\ difference bet~ cen Figs. 13 & 14 is the ",t thec lo op in die progiain PAYROLL is represented. In

Fig. 14. the irious parts, of' he loop are broken ipar t mit giument whIich arce connect by dlata flow rather than

coi dr iloA4 . 'I his is done through a process cal led iijowal (deIraction 1271.

I enipotral abstraction treats scrics Of WhlieS Inl tile h001p (e.te succeCssive %alues of HOURLY-WAGE) its if' dhes

%A crk 11gle daitJ objects. These leinporui .sciw ire repi ewened by bold daw floA arrows in Fig. 14. l1emiporal

ahstric tnin analyies a loop ats at set of' gcticrators and co~nuii'rm A hich are son tes and sinks for temiporal] wries.

Fmt cxaitpic. in Fig. 14. the generator GRE AD create, a temporal series of' HOURLY-WAGE Wi~lhie whickh 11-le

Cl1Yn~omd hy the segment I IMES( 40). Ihis segment wn torn crei ates i temporal series, of GROSS -PAY 'aus~h~

,are NnLnIT1Cd uip by the segmnrt PLUS(SUM).

HWF TEMPORAL COMPOSITION GPF

CONSUMER

CWRITE

N GP
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P . tUoderstood in isolation.

Sintch " as iimplemenmted ill the COnteCxt Of' L1he I1iograinincr's Apprentice project and it shaic s nin 'deis 'Al iil

tir rest of die project. Ini partICUlar. the plan replrcsenttion. the planl c[aton1)l modu(le, and ili' 'roimpmnfg mo1dHic

are h ored directly from Kil B1,11CS 128] WhIiich IS thie enurrent demionmst ration ss steinu dc'.eh)ped 5s part of' !tic

IProgramer\r Apprentice project.

I lie aigorithni ideniti fication niodule inspects the grouped plan and determ inles the net effect (it" the

computtion1.01 being perf'ormed. Ii combinlationl with the results Of key determination, the results of algorithmr

identificatiion ton an abstract description Of the program. Fig. 15 (adapted fromn 1101) sho.ks the ahs -Ircl

decriptionl which is created for the program PAYROLL. [he first part of Fig. 15 comes directly f'roin the data

di sn of the Cobol program an notated by the key determination mnodule. '[he seconld part oif lg 15 ('()fie';

fromi lgorithmn identification.

Aheorithmn identi fication operaites in two stages. T[he first stage identifies what k ids ot'loipingi C ~litinti( 111

are present inl tie program. [his is done by special purpose procedures which scan the grc nnpcd plan and

recogni/,ta~ndard kinds of computation. Ini Fig. 14, thesc recognition procedures idenlti f' th at die segients

CREAD id EOin P enunicrate the records in a file while the segment CWR tT - umuilatcs a series of records into a

file. I hie% also i dentik that the segmient PLUS ( SUM) computes a sumn while the e-gmient PLUS ( COUN T ) coiTIites

a count. I ihe inmes Of these ,egmrents in Fig. 14 reflect the fact that this recognition has beenl perfarimed.) Fihe

rcc~etin sig o th agoith ienifiatonmodule makes it posil to use the tennls "enurieiate", "Sum"

and "onit" h asrc description to describe the computation in die loop instead of recurrence equadtion1s. 4

Hlie second stage of algorithm identification computes summary descriptions of the computation performecd by

dcprogram. [his is done b means of a symbolic evaluator which traverses the plan and 1CCUmu1Llates algebraic

equations which describe the computation. For example. the symbolic evaluator determines that the field

GROSS -PAY has the value "CRE AD-VALUE (HOURLY-WAGE -IN, HOURLY-WAGE).40." i.e.. forty timles ahe '.alue

of die HOURLY-WAGE field read from the filec HOURLY-WAGE-IN. Similarly. it determines that the field

TOTAL -GROSS-PAY accumulates the sum of the GROSS-PAY values. An algebraic simplifier is used in order to -

render the equations in as compact a form as possible.

.57%,
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FILES:

HOURLY-WAGE- IN

key-field EMPLOYEE-NUMBER-IN 9(9)

data-field HOURLY-WAGE 999V99
GROSS-PAY-OUT

key-field EMPLOYEE-NUMBER-OUT 9(9)
data-field GROSS-PAY 999V99

EMPLOYEE-COUNT-OUT
data-field EMPLOYEE-COUNT 9(6)

TOTAL-GROSS-PAY-OUT
data-field TOTAL-GROSS-PAY 9(7)V99

COMPUTATION:
The main loop in the program enumerates the records in the file

HOURLY-WAGE-IN. It terminates when EOFP(HOURLY-WAGE-IN).
fields written on each cycle of the main loop:

EMPLOYEE-NUMBER-OUT = CREAD-VALUE(HOURLY-WAGE-IN, EMPLOYEE-NUMBER-IN)
GROSS-PAY = CREAD-VALUE(HOURLY-WAGE-IN. HOURLY-WAGE)-40.

fields written after the main loop:
EMPLOYEE-COUNT = count(NOT(EOFP(HOURLY-WAGE-IN)))
TOTAL-GROSS-PAY = sum(CREAD-VALUE(HOURLY-WAGE-IN. HOURLY-WAGE)*40.)

Fig. 15. An abstract description of PAYROLL.

'I he reimplementation module of Satch produces a Hibol program based on the abstract description of the

Cobol program. This is done by converting these equations into Hibol syntax. The only real complexity in this is

checking that the program is expressible in Hibol. In particular, the rcimplcmcntation module has to clicck that

each input file is processed in full and that the input keys map to the output keys in a way which is compatible

with tlh implicit file reading and writing performed by Flibol.

Iitmis y'.Saich

Although it illustrates the efficacy of translation based on abstraction and rcimplementation, there are several

Aays in which Satch is limited. First of all. Satci, is only a demonstration system. It has only been tested on a few

examples and therefore has not been fully debugged. In addition, it is quite slow.

A m ore fundamental problem with Satch is that it is only applicable to a narrow class of Cobol programs. Part

of this is due to the fact that, since Hibol is a relatively special purpose language, many Cobol programs cannot be

rca',,n~hl\ translated into Hibol by any means. However, there are many Cobol programs which could in

prin ipIe he translated into tHibol in a reasonable way which cannot be translated by Satch. I he basic difficulty is

Ah1t Satch does not have a generalized recognition facility. Rather, special purpose procedurcs hase to be written

In dcr For Satch to be able to identify what kinds of looping Colm1putatiols are present in a program.

r(_, icwing this difficuty is a primary goal of the knowledge-based translation system discussed in Scction VI.
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V - Cobbler -- [ranslating from Pascl to Assemblcr I anguage

I)ul'te 's proposed Cobblcr sxstcui (91 usc:, translation via abstraction and rciuplemeLnttion iln order to
compile Pascail 1131 programs+ imtoI P)P-I1 assembler languagc 133]. Cobbler's goal i,, the cicat of' f extremely

efficient object code - code , hch is comparable in efficiency to the code which could be produced b;y an expert
assembly language programmer. This is a lcvel of efliciency which is beyond amy existing compiler and is
arguably beyond the abilities of any translator based on transliteration and refinement.

At first glance. it may seem surprising that Cobbler and Satch use the same approach to translation. After all.
the problems associated with compiling Pascal do not seem to be very similar to the problems associated ' ith
translating Cobol to Hibol. In particular, the goal of the former is efficiency of low level output while the goal of
the latter is readability of high level output.

However, the two kinds of translation actually have a great deal in common. Stated generally, the key problem
both s~stems face is that the quality criteria which govern the source are very different from the quality criteria
which govern the target. In order to have the freedom to do a good job of satisfying the target criteria, the source
must be analyzed and restated in an abstract way which frees it from the constraints of the source criteria.

Example of Cobbler's Compilation

SFigs. 16 & 17 (adapted from [9]) show an example of how Cobbler is intended to operate. Fig. 16 shows a
Pascal program which initializes a 4x4 array A of bytes to the identity matrix. The program does this a column at a
time by setting each column element to zero and then changing the diagonal element to one. Fig. 17 shows the
PDP- Il assembler code which would be produced by Cobbler.

var I: 1..4; J: 1..4;
A: arrayrl..4, 1..4] of 0..255;

begin
for J := I to 4 do

begin
for I := 1 to 4 do A[I.J] :a 0;
A[J.J] :I

end
end

Fig. 16. The Pascal program INITIALIZE.

MOV #A,R3
MOV #3,RO

LI: MOVB #1.(R3)+
CLRB (R3)+
CLRB (R3)+
CLRB (R3)+
CLRB (R3)+
DEC RO
BGT Ll
MOVH #I,(R3)

l ig. 17. ('olhlcr'sc% ttipiltion of'Fi . 16.

-S
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'lhe code in Fig. 17 is much more efficient dan a simple literal translation of I ig. 16 into Pl) -1 I aei iihle-r.

1 he optiriiations introduced can be divided into two categories: algorithm indcpendcnt optimizations alnd

changes to the algorithm.
Thc algorithm independent optimizAtions are improvements which any good optimizing compiler might make.

lhe inner loop is unrolled in order to eliminate the overhead engendered b) having a loop. The matrix A is

operated on as a one dimensional vector in order to simplify address calculations. The outer loop is controlled by

an auxiliary counter (RO) which counts down instead of up. This allows the code to take advantage of the fact that,

on the PI)P-11. comparison with zero is more efficient than comparison with other numbers. (After each

arithmetic operation, condition codes are automatically set which specify whether the result is greater than, equal

to, or less than zero.)

[or the most part, the optimizations above are straightforward. The first simply involves duplicating the inner '"

loop body, and the second is essentially a strength reduction. I lowever, introducing an auxiliary loop counter is

somewhat more complex. If a loop counts from ni up to in by s. Then a new loop counter can be introduced

which counts from r-Vs down to zero by one. Computation of the old counter is retained so that it can be used

within the loop while the new counter is used to control the loop. (In Fig. 17 no trace of this computation remains

because the simplification of the addressing calculations has rendered it unnecessary.) "lbe correctness of this

transformation is supported by the fact that Pascal prohibits the body of a "for" loop from modifying the

iteration variable or the bounds of the iteration.

In order to highlight the algorithmic changes introduced by Cobbler, Fig. 18 shows a dcecompilation of Fig. 17

which undoes the effects of the algorithm independent optimizations discussed above while leaving the

algorithmic changes in place. It should be noted that the figure is merely intended as a presentational device.

There are a number of reasons why Fig. 18 is not a valid Pascal program. (Most notably, the matrix A is declared

to have different bounds from those which are presumably associated with other uses of the matrix.) Z

var I: 1..3; J: 2..5;
A: array[1..3. 1..6] of 0..255;

begin
for I := 1 to 3 do

begin
ACI,l] :- 0;
for J := 2 to 5 do A[IJ] :- 0

end;
A[4,1J] :-

end

Fig. 18. A dcecompilation of Fig. 17 into pseudo-Pascal.
,'

Conparison of Fig. 16 with Fig. 18 shows that the computation performed by the target code produced by

Cohhlcr is startlingly different from the compuuition performed by the source code. In fact, it is prohably not

;mpplopl itto say that the tVko picces ofcode ire tusing the \ame al:'orithln.

III,,. ', tth lic J:lll'c." hi',c xci init hiced. 111 I tI code ;i\,it di, .dltnd,m l st the di..on,d

- ~ :~~ *. -.
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elements to /ero belolre seling them to one. 'lhe target operates on A in row major order rather than column

major order. 'T'he target treats A loically as a rectangular 3x5 matrix plus one additional clement instcad of as a

square 4x4 matrix.

Perhaps the most important ditfcrencc is the switch to row major order. For whatever reason, the programmer

chose to use column major order it) Fig. 16. This choice clashes with the fact that Pascal stores arrays in row major

order. Switching to row major order changes the program so that it references the elements of A in memory

storage order. This in turn makes it possible to use auto-increment mode P[))- 11 instructions to support the

address calculations required.
Undoubtedly the most surprising change is the switch to operating on A as a 3x5 matrix. This makes it much

easier to set the appropriate elements ofA to one since all these elements arc now in the same column.

As will be discussed in the next subsection, Cobbler is able to make the algorithmic changes outlined above

because it creates an abstract description of the program which is not constrained by the order of iteration in the

loops, or even by the fact that A is declared to be a 4x4 matrix. These changes are arguably beyond the scope of

any current optimizing compiler because they require an understanding of what is being computed by the source

program as a whole.

If the programmer had written the program as shown in Fig. 18 then any good optimizing compiler could have

produced the code in Fig. 17. However, it is implausible that the programmer would have written the program in

a form anything like Fig. 18. This is of course partly due to the fact that it is not technically possible to write the

program shown in Fig. 18 in Pascal. However, much more importantly, it is not desirable to write programs like

Fig. 18. The programmer should not have to worry about detailed efficiency in the source code. Rather,

readability should be the primary concern. The source program in Fig. 16 is preferable to the one in Fig. 18

because it is more readable and therefore easier to test, verify, and maintain. (One might argue that Fig. 16 would

be even more readable if it operated in row major order. However, the fact that it operates on A as a 4x4 matrix

clearly makes the program easier to understand than Fig. 18.)

Design of Cobbler

As shown in Fig. 19, the architecture of Cobbler is similar to the architecture of Satch (see Fig. 12). In

particular, the first three stages of abstraction - parsing, plan creation, and grouping - are identical, and are

intended to make use of the same modules of KtIFmacs. The difference between the lengths of the right hand

sides of Figs. 12 & 19 is intended to indicate that creating an efficient PI)P-1I implementation of' an abstract

description is much harder than creating a Hibol implementation.

NS ii,3,
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abstract de scription

ALGORITHM /
ABSTRACT ION/

grouoed olan

GROUPING KNOWLEDGE-BASED

surface plan REIMPLEMENTATION

PLAN CREATION7

g~r se tree

PARSING

Pascal program PDP-1l program

Fig. 19. The architecture of Cobbler.

Th e final stage of abstraction uscd by Cobbler (algorithmn abstraction) goes beyond tile algorithm idcntification

used by Satch. The goal of algorithm abstraction is to identify the various design decisions which were used when

writing the Pascal program and then undo them. This leads to a hierarchy of abstract descriptions for the program ',.

,hich are constrained by fewer and fewer design decisions.

When analyzing the program in Fig. 16. the algorithm abstraction module first withdraws the decision 1t use

loops when operating on A. T'his implicitly withdraws the decision to iterate in column maJor order as opposed to

row major order. It then withdraws the decision to set the diagonal elements to zero betbre setting them to one.

Finally it withdraws the decision to implement A as a Pascal array as opposed to a non-contiguous group of

variables. All of these steps could be performed by recognizing standard algorithms in a grouped plan for Fig. 16.

The left side of Fig. 20 summarizes the last step of algorithm abstraction. The 4x4 description represents the

net effect of the program in Fig. 16 on the Pascal array A. The abstract description represents the net effect of the

program operating directly on the individual matrix elements. The significance of the abstract description is that

it gives Cobbler the freedom to consider ways of accessing A other than as a 4x4 array.

(abstract description)
1 0 0 0 0 10000 10000 10 =>A. ... A4 ,4

/\
/\

/\

(4x4 description) (3x5 description)
1000 10000
0 1 0 0 > A 1 0 0 0 0 z> A
0 0 10 10 00 0
000 1

tig. .0. Sonic descriplions of .ig. 16 used by (obbler.

I% %
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4 the abstract description. As one of the first parts of the reimplementation process, 0.fl hicr l)k( for prtcrni'n in

the abstract description in order to decide how to use loops in the output prograim. I lie iccurring pattern

"i 0 0 0 0" is discovered. This causes Cobbler to reorganize its understanding of the program into the 3x5

description shown on the right hand side of Fig. 20.

Once thc 3x5 description has been created, reinplementation proceeds by investigating a varicty of
implementation options and ihen choosing a consistent and efficient set of these options. Iollo ing standard

Pascal practice, the array A is implemented as a row major order sequence of conseCuti\C bytes ill memory. (Ihis

decision has to tike the other uses of the matrix A into consideration.) FIlcments of A arc addressed by stepping a

pointer through memory. Since the inner loop which zeros the non-diagonal elements of A is very small and only

iterates four times it is unrolled into a sequence of four separate instructions. Clear-byte instructions are used to

zero elements of A.

The key difficulty in making the above design decisions (and the other decisions \khich arc required) is

controlling the search process which investigates the various options. Flexibly and efficientl controlling search

was the major focus of l)uffey'\ research. He proposed the following approach to the problem.

A data base is used to represent Cobbler's evolving understanding of the implementation. I)esign decisions

are represented in terms of transformations. Each transformation consists of a pattern and a procedural body.

Transformations are triggered (causing their bodies to be executed) when their patterns match portions of the data

base. The effect of a transformation is to modify the information in the data base, or add ne information to the

data base.

The key component of the knowledge-based reimplementation module is a conflict resolution mnonitor which

controls the triggering of transfornations. It exercises control principally by deactivating and activating groups of

transformations. Associated with each group of transformations is a function which can create estimates of the

costs in time and space associated with the design decision suggested by the group of transfornations. (For a

discussion of one way in which such estimates can be computed see [14] ) The conflict resolution monitor decides

which groups of transformations to activate by comparing efficiency estimates.

An important feature of Cobbler is that it does not assume that it will always be able to make an informed

choice between the design decisions it is faced with. In order to deal with this problem, Cobbler keeps a record of

the design decisions which were used in the source program. In situations where Cobbler is not able to make an

informed choice, it uses the relevant source program decision. For example, if no pattern had been found in the

abstract description. Cobbler would have used the 4x4 structure suggested by the source program.

It would also be possible for Cobbler to take advice on how to compile a program because Cobbler's

processing is based on design decisions which are comprehensible to a programmer.

'he discussion above shows how Cobbler is intended to operate. However, Cobbler is not a running system.

With the exception of parts of the reimplementation component, no attempt has been made to implement
%,-,.

CO ,hh cr.
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VI - hc Kno\,. h-d'.c- Bascd Ir inslatt '.

N\ oik is cttrrently llduderwa+ in the l lrograminer'S I AI) pre.'nttILC 1lrtj( _ (ill lie II( 11 C ¢i t ,,t (i i Is f n'i lI I ll ) I I ', [it

I o led',e-hased translator openting via ibstraltion and rcitiiplenentatiti .\ n ipoit, iIIt vii t. ol this ,,t i Is ,

that tLuch of its knowledge (iftranslation will be represented its data rather thieaF p ro..edures. As d result. it w ill he

pos ,uble to readily extend the system to cover a wide range ofsource and target languages.

I)i order to understand how the knowledge-based translator will operate, it is first nccessars to discuss two i"f

the kcy ideas which undcrly the Programmer's Apprentice (see 1281). The first idea is ,he conccpt of :a chdu .

Pi'ro rans are not constructed out of arbitrary coihinations of primitivc prograi iniiing co)nst ructs. Rzhc !,"

p rocpiams arc built up by combining standard comptaitional fragments and daita structurc fi gicnts. lihc,,c

standaird fragments are refet red to as cliches and foirm the heart of the Programmer's ,pprentice' undcrst|nding

()tp tgrainmi ng, just as the form the heart of any person's Li idcrstandi ng of pig ra)inlig.

A,, an example of cliches, consider the Cobol program PAYROLL in I-ig. 10. i Iils proeraim contatins a nualhcr ,f

clichcs which can he named and described ats follows. The data cliche kertcd- sejueinti-( ,bl-Ji/c spcci 'ies hmk a

seriws o f records with keys can he combined into a tilc. [he coimputationail ciliche cli litwnr u'-keyed-sequtvu,tit- l-
SN

C',-flc enumerates all of the records in a file taking care of opening andi closing the file. T he coMpututional

clichc ,accumulate-keyIed-sequcnmiul-('obol-fle writes out a series of records into a file taking care of opening and

.,ntz the file. The computational cliche Cobol-sum compties the sum (f'a eqtencC (if numbCrs.•

. crucial feature of cliches is that they can be arringed t a tnilti-lcel , ,-cialization hierarch as shown in

Iii. 1. The descendants of a cliche in this hicrarchN are more specialied cliThes Ahich specify how the cliche

:1A he adapted in various specific situations. For example, thete is an abstrA; cliche 0',I)IC1h hich h.is ; set

d) ,ccndants which specify how to enumerate arious kitds of data structures (e.g.. coitcrae-f/iHe and

l.':,,,'rate-vcctur). Similarl.. the middle level cliche en umerate-file has a set of descendants whIch spacif\ ho t,.

,,'ntm \,erate diffierent types of files (e.g., enumerate-itilecdt-filc and Goumeraic- Acted-.s,'lldCtt(i. -ilC). Going omic-

itp 1',irther, each of these specific file enumeration cliches has a set of descendants Ahich spec.mf exactl\ wh-it

iv)ct,ons are used to open. c!ose, and read tiles in \'ariotts diffcrent programming langtuage eniront ents (e.g.

S'nupw rate-indc.xed- Ada-file and enumerate- ke;ed-sequciinilm-( obol-file).

enumerate

/ I . .

enumerate-file enumerate-vector

/ I .... ;

'-jmerate-indexed-file enumerate-keyed-sequenti al-file

! ... I .... - :

,,'r rte-indvxed Ada-rile entim',rate kpyl ;etquentLI Ca I l fi IP

I .' 1 11 1 1 - o't l t l " )". tt" I tv ltll 1 ' 1 ) lh 1t" u l | l ". ' "_I
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nA cod key idea which underlies the Irogrmmnier's Apprentice is the plan ropte,.cntitron vhich Ads

disc ssed riect, in Section I\. lhe most important fIiture ol a plan is that it is a11n abstract rcprc"ent.itiori of a

po ,giim hi'ch captures the k,.) F'ture.s tf the COMfpiitatitii v hilc ignoring the s+,,ntactic dct.is of particular

pr( grmn ing Larguages. I-or ex,miple. d ata flow is i cpresented by simple arcs in the plan for a program no0 mattCr

how it is implemented in the program (e.g.. via variables or parameter passing or nesting of'eXpressiiis).
Ioth Satch ind Cobbler m.ike usc of te version of the plan representation which is used b, K Wirlacs. Since

the design If those, systems, Rch 1 71. 181 has developed an extended plan representation called the piau calu(/ho

sAhlih is capable of representing r ouch more inforrnation about a program. In particilar, the pl, calculus is

capahle of representing data cliches and the specialization relationships between cliches. In contrast, the plan

representation used by K Il !mics is only capable of representing conuutational cliches and onl, in isolation from

each other.

/'sin, oi'lhi A/o it cdlric- /?asetd Translator

lie. 22 shows the way in Allhch plans and cliches can be used as the basis for a knowledge-ha ced translator

operating .ia abstraction and reimplementation. The modules on the left side of the diagrarn si ipport ahstraction.

I he modules on the right side of the diagram support reimplcmentation. The key component of the system is a

hmhrar\ of cliches like the ones described above. Specialization relationships are used as die basis for the

orpgai/ation of the library.

CLICHE LIBRARY

abstract cliche elan.

CLICHE CLI HE
ABSTRACTION \SPECIALIZATION

source cliche plan target cliche elan

RECOGN I TION/

Dian

PLAN CREATION CODING

parse tree

PARSING7_ _ _

source program target program

Fig. 22. I rmslatmon ha,,cd on cliches and plans.

IMe first two steps ofahsiri. ion (par-sing and plan creation) T- exactly the same as in Stchl1 and (i' ibler. ilhe

.".1m t%o t'ps of trti on (rccognition and cliche ahstraction) are Silmiltr to ('ohblri', .li ithm , rtr( li<n -on

'1- I h ' , 1Ci l ti Il l , ' i k," I ,s , (llm t lr c 1 dir, lt ! tli ,C 1 - i .'l ii' I11 L 1i Wii , d i Wl 1," i ''

ilSi



I hI i icioiitI oil nI odle SC II is thle grouped plan iiid dc I i iics A it sit I] 121 lIiiIi.C LIv I 1W.I C neLd1)

*ct I t theL I VsoLurce program. H(I his recognitio n is ploIhirlu-d d I Icc[ I oI ItheC '.II; kiac pla1n 1 I Ii~ hI c t ,i;I It."

ih, !iipini peitb'Orned hs S~itcll aold Cobbler.) Wic lieappliedl to tile (Ohtl rTOLi-lil InI I w. l0.iw2i'

iid reseail that dhe programn was cotmposed Of Cci ieCs suLch as k\e sqLe lC h I-tl.cnim

"C! licietial,11-Cobol-tIleI C,ciiiilt-ec-qiiiil('b-l. Co(ls intnd tohol-sUn.

liclie ab)StIrationI module cicaites an *ihstiactL plan h replacing sp)cOiliCd planj[s ssl thle Mote Ihstiict

IC, he C aeSPeCiali/t1iOnIs o1". 11n the examuple abuse. this wou)Lld Yield p Lln inso0liig thle albStra lclICS

! .- LcJIInCllC, enIUMemAo. a1ccumuIlate, count, and mmi.

IC t! .t~lt plan attempts not to hurcc anly design decisions. It simlpk states 0th1t there ale teitainl sequen:1ces of

itnneccortain dati wahues and key, amd that %ariiitiS operat1Iions aIC pcrl('rned oni these \aliics. I lhe

WI nItC111 featur ilte ahbstrIct plan is that1 it Is comltly(l neutIral bniw Ccul (ik Cohufl progn1 %hInch

nIl,-Its the sCq4UCIImicets files ind a I libol programn whicl imupiements thmewi as tlis oi-, fIM that itlatic-r I isp

111 %I'i cli implcimen Is themn as lists.

.erinpleinentotion process Ii Iig. 22 operaites Ii thek res erse of the Ast, it inA~hich ibstmaction if (pciits.

i. K spcc: I'l i/at lonl selects ciliches w Ii ich specildic thle cliches Ii tie abstraict plan Ii a wa w Ii ich is appr)IOpriate!

IW t:!0e (2I anlgliage. (ilichc spCciaal ion ( w Iiich canl he louoked at as hibrai diken 55 uthcsis) is the inwelse of

* a hstraiction. N owes er. it Is moi re difficudl than cliche ahstraction becauLJse it is harder to imake design

!Is than1 to discard them.

dhing creates programn text corresponding to dhe specialized cliches. "hich arc selected by cliche

*iatan i Coding I, iste inwsrse of' parsing, plan cretion. and recognition. Inveri reco,-n ition aind pairsig

il iowes er. ins it ing plan creation is di fficu it. because in formiation corrsp(i nding to the infIirinit iil

t*i:' :i iAmy by p~lan ceatmon must be generated. [-or ev~inple, the Coding mIodle hais to decide how to i ender

K'(,, aesthetically in the target language using s ariahles and ncsting of expressions.

io wming tMe Knowledge- Based Translator

-,rcss, has been made toward implementing most of the components in Fig. 22. I low eser, linlc ot tes

I Vn ,, has wet been completed. Rich and l-eldiiian arle currentls i the process of iinplcinemviiig the plan

k-ii ether v. ith a genier~i purpose aUtomnatic deduIction S steml 1191 to si ppoi rcason inv in it. I \icflsi se

Ilie~id\ been don ino designing the librar\ [171.

hn . particular source language. it is not difflict i o implement a parsing iiduic, A,, nieniioned ihw -s e the

!cationl module Already exists as part of' K I1nimcs. I his mnodule has to he recwrititc so thait it operte1s Ii thle

o,; (t(he plan1 calculus. I lowetser, there should bc lio parIticulaIr difficutlt iii doing this.

0iMacs Aso( cotitains at coding miodule tiiialogotis to thle onie needed h' the knowlecdge-based ti,ifL itw'

L! I i theme arc iany inipro-.eniits which need ito b imade in this nodok' it shoid nit i)c dlitti tilt to >

'it .1n idcq ii. te codiive ni ~dilc M uIichi 'e I II 1 1 Cii nt I iii ti Hi.1 Ik a 1,1

-~~~~ IU- : 7 :. 1 ~ ~ ; I~->. I-~~'-. It 1, -I. j itIi
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,hlt ild be straightilr\%ard. C liche abs~traction is driven by the specihilitihon links inl the clichec library. Cliclhe

'Iheire hiis d-,so been no attcmlpi :o imrplemlent the Cliche Spccialiiati-n module,11C Like cliche abstrmiciion. cliche

spcali/altion is di yenl by the speCLia,at11o01 links ill the cliche library. H owsever. cliche spc:dation is birder

than ciliche abstraction becan~e numerouIs design decisions havc to lbe made when choosing a path through the

specializat ion liniks in the one to niany di rection. It is expected that, like Cobbler, the cl iche specialization m d0u1.1c

Will Use a variety of estimiates and heurIistics inl order to mnakc design decisions. Also like Cobbler, design decisions

detected during cliche abstraction wNill be used to guide cliche special izat ion1 inl situations where these hen ristics

fail to be applicable.

In many wayvs, the central module in Fig. 22 is the recognition module. Work onl this, modu(leI has been

uinderWav For several years. Recognition canl be viewed as a parsing task. FUrom this \ ec" point, the cliche library

is a grammnar wnich can he Used to derive plan% for programns. Inl order to determine W~hich cliches Were used to

constIruct a given plan one neds. to parse the plan. T[his would be a straightforward task it' it v.ere not for the fact N~

that the plan for a program is a graph rather than a string, and cliche instances correspond to subglraphs in the

pl..n rather than SUbst-rings.

As a first step toward solh ing the recognition problem, Brotsky 161 implemented a parser which is able to

* eficnrtly parse flow graphs (a restricted fonni of acyclie directed graph) gisen a flow graph grammar. Currently,

/elinka 1291 is implementing an experimental recognition module which utilizes this graph parser. [urther

research is required in order to de\ elop effective methods whereby the k nowledge- based trans lator can deal w ith

inkcomplete recognition.

Once the implemrentaition of the components described above hits been completed, it will be possible to use

them to constnict a general purpose. knowledge-based translator. As mnntoned above, a key feature of this

s~stein is that it Will he data driven with most of its knowledge embedded in the cliche library. Additional

research "ill havew to be perfiirnied in order to discover how best to represent the heuristics Which are an essential

part of the specialuiation comp inent and to a lesser extent of the coder component.

V1Ii - Related Work

Ihere are se~eral areas where active work is in progress on translators. H owever. essentially all current

translaltors operaite a~ transliteration and refinement. Some translators (eg.optimn/ing comipilers) do a

F sigiF~lcanlt anion int ot global anlssof the source program. H owever, it is not clear that anm program trainslator

takes, the step of ittenpting to obtain an abstract understanding of the comiputation being perttruied bs (the

progrim as a whole.

iti1ptYms Jic 1t1e 10t 11t.iieol of t11Ira Isitis. 'I hecy hIANe been) well developed oil 111w Cll 1

J, 11 ). th



34

tr~insiteration and refinement. T[he Source language is transliterated (via parsing and sx nlix dire~ictdili i)

into III intermlediate language which is analogous to a mlachinec langua.lge. RWelIinIcis (Opt imII /AIoS) drC thenI

applied to this intermediate represcntation. Finally. thc2 intermediate laniguJI'e is ir,insliieratcd into the itiii

taret angage The current developments in compiler research 1301 inidicate that the basic approach to

com pi ation10 outlined above is still adhered to.

I lwe er oerthe years. two trends in compiler research have been inox ing in the dirction of abstraction ;Ind

rcimrplemcntation. One trend is thic development of intermecdiate representations which look more like dlata flow

dliagrainis and less like particular machine languages. These more abstract rep resentat ions facilitate the

corm'ti"rueti( in of families of compilers which produce Output for a variety of' target machines. Hicy also facilitate

the 11ii)Inplation of the program when optimizations are heing applied. InI particular, they makes it easier to keep

track of- the datai How in at program.

A nother trend is toward mnore powerful optimizations %hlich require a greater understanding of what is going

onl in i program. Classic peephole opttilations such ats locating patterns of instructions for which at special target

nsntrtion is ax ailahie operate in at very local way without any understanding (if context. More powerful

optlh/iltions such as removing an invariant expression frotnia loop require at general understanding of tie

Sn inn 11ding data flow and control flow. Optimizations such as strength reduction additionally require an

underi tanding of the mathematical properties of the basic operators (e.g.. "+" and .)

Ilic kind of analysis which underlies complex optirni/ations is at step toward creating an abstract stmIMITary Of

the pi gram being compiled. fHowever, it is only at small step in this direction because the information obtained

hx anid \ sis is not very abstract. f11)e only abstr-action is itx, ay fromn particular datai flow and control flow constructs.

In add non, the analysis is narrow in scope. aiming onlx to gather enoiugh intoination to answer at few specific

questio~ns about the program. No attempt is made to obtain a general understanding of the Computation

perfomeind by the program.

(on rdumgfJr Parallel Machines

I he- problem of compiling a conventional programming language so thait it runs efficietly on at parallel

rnlachii highlights the strengths and weaknesses of current approaches to (iptinii/ation. Consider compiling thle

fI~ortr.ii program fragment in Fig. 23 for a vector machine. 'I lie fragment is a triply nested ioop which comnputes

the produt t of two NxN matrices.

DO 100 J =1, N
DO 100 1I 1, N

DO 100 K =1, N
C(IJ) C(I,J)+A(I,K)*B(K,J)

100 CONTINUE

I Ig. 23. L oops perfonining inatri x mnultipl ication.

ii nt. i Ie..2 ('iil~ Liicentv xecit~l il a'c~'iiiiiie rtbni ina .tle'~iiioihechil16l

%0
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... , cautcd on tihe t\ ical vctlor 1a1t.linc. ''he prohlciti is that each CSCIc (afte' the filrt) (i the i c ,i loop ues

the \,tiue W ilp nitd on the prior ccle lica\ing little roomi ('ir %ectri/J,(ion. I h ,A e%(,r. if the hops ale -

intethanged so that the K loop is outernosl, then they cain he Cthcien'lv exectited on a %,'Ctor machine.

ihc discussion il 12] show,, how a compiler for a vector machine can autOmlatical, interchange loops in order

to improxe the efficiency ot0 the code produced. Interchanging t%'o loops changes the order in hich

coniputations are performed. Many sUbcompurations which were pcifbrmed in the order SI S 2 bcfo(re the

interchange \iIll he performcd in the order S2 S1 after the interchange. An interchange is cor rectnc,s prevrs-ing

as long as nothing in the original program either requires that S2 follow S1 or prohibits S2 from preceding S1

A global analysis of the loops in question is a key part of the loop interchange optimi/ation. [he compiler

inust obtain an understanding of the data dependencies hetA cen array elements in the loops. Ihis Jequires an

understanding of the dat flow involving the arrays (i.e.. A, B. and C). It also requires at least a prrtia*

understanding of the interaction between the loop iteration xariables and the index expressions hich select array

elements.

In Fig. 23, the index expressions are very easy to understand. I lowever. the index expressions in t loop cn be

arbitrarily complex. For example, they may be functions of the input data. The analysis of index expressions

used by the loop interchange optimization described in [2] is limited to situations where the index expressions are

linear functions of the loop iteration variables.
W ill An interesting aspect of loop interchange in particular, and compiler optirnizations in genera, is that they are

deliberately designed to be narrow in scope and independent of whatever computation is being perfomied. 'Ibis

has the ad'antage that the various optimizations can be applied in a wide variety of contexts without the need for

any special knowledge about the particular algorithms being used. However. it has the disadvantage that the

optimi/ations cannot utilize special knowledge about the particular algorithms being used.

Given the algorithm independent nature of optimizations in general, the level of object code efficiency Ahich

can be achieved is very impressive. However, there are definite limits to the efficiency which can be achieved.

For example, consider compiling Fig. 23 for a highly parallel machine which has many independent processors.

For this kind of machine. optimizations such as loop interchange are not sufficient to produce efficient code. The

problem is that for a multiple processor machine, the standard matrix multiplication algorithm is simply the

wrong algorithm to use. Special algorithms for matrix multiplication have been developed which are much more

efficient when run on a multiple processor machine.

In order to create really good code for a multiple processor machine a compiler would ha%e to recogni/c that

matrix multiplication was being performed in Fig. 23 and thcn replace the standard algorithm with one of its

multiple processor counterparts. The lack of compilers which can make this kind of transformation significantly

limits the usability of multiple processor machines. In order to make full use of these machines, programmers

ha~e to rewrite their programs in special languages using new algorithms.

, %"
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I i I i! Ie angiuage C unpilcrs

\ third category of compilers is compilci, fir gencr.il purpose cic high I\cl lanevi'e',. \ l number (d such

!,v.i.,c hasc been dcsigned (e.g., SiI'.[1221. Gist 131 mid V 1121). 1 hec Llnguge,s difl:r Irollm high level

11Ln_-IAs2L' in that they are more abstract. A good examplc ot this dilikrceice is the tliatillint of data tlrctilles.
Ieh 1,el languages pro%,idc facilities so that the progrnier can speci f' the exact dctai Is of how data 4,tfi CLures

,iitld he implemented. In contrast, very high level Linguages t pically sUpport only a few unier,, a!a

.,:; u reS such as sets and mappings. All decisions about how to inmplerment a gi en set or mapping cfciciently are
te very high level language compiler. This simplifies what the programmer has to do by reniM ing large

4" the programming task from consideration.

I frtun ately, constructing a compiler for a general purpise cry high Icvel lalguage whlich produces etl'cient

0'1" '-,-ode has proved \cry difficult. While these compilers are the subject of active research, it is not clear that

ih i compiler can be said to exist even in a research setting.

Ic SVII. compiler [11I is implemented more or less along traditional lines with the addition of a special

crmp ;ent Ahich selects data structure implementations. liewos er, the key technique ,hich is being pursued Js

a hi.,t, for very high level language compilers is refinen nti through tran.sformation, 131 1121. In this approach a

.. high lesel language source program is progressivel refined into an efficient target program by applying a

,eyic:lc' of correctness-preserving transformations. 'hc net effect of the tranfor-nations is to replace all of the *
hl.-- : ~ concepts (e.g., set) in the source with concrete concepts (e.g.. record or array) in the target. The key

prohlem (which has so far resisted solution) is that there are a vast number of ways in which a source program can

i:,,lonirmcd and it is very hard to decide which ones will lead to acceptably efficient results.

P,'Icinenent through transformation is basically an example of the transliteration and refinement approach: or

rth:; .t refinement. Using transformations has several advantages. In particular, each transformation typically

eu ,dics a single implementation decision and is straightforward to understand in isolation. Further, since each

t:,1,Itfltlation1 is correctness-preserving it is clear that the result produced will be correct.

\i,at is lacking in the transformational approach is a general strategy for making oserall design decisions. It is

11. Wcar that it is possible to make these decisions on a local basis as individual transformations are applied. One

ahiem 1te approach would be to pursue all of :he major choices, compiling a given program many different ways

I'n pick the implementation which is best [141. Iloweer. it is not clear th.it this approach can be practically

-d t complcx programs where large numbers of choices have to be made.

,othcr approach which has not yet been tried would be to use abstraction and reimplementamon as the basis

f(m K icc. 'I he goal would he to recognize patterns of computation in the source program which sugge,t that

1 mii ;Jar design choices should be used. A strategy would still be required fIr selecting between conflicting

s' -,lins. However, this strategy could benefit from haing a high level description of the conflict.

-- ..- -
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A i1 uIlnhcr of sotII Cc- to-SotI Cc pro ra iI trainslators cx ,,t. I oc C-r. as a grou p, they are not ;is cl I dcveloped

as compilers and relatively little has appeared in the literaituric about them. It sccms that all current

SOUrCe-to-SotircC translators oprate via translitCrit on and refinement doing relatiely little refincieent.

Unfortunately, source-to-source translators tend to be incomplete and incorrect. Most of them handle only

part (around 90%) of the source language. Further. relatively few SOUrce-to-source translators correctly hiandle the

sub-language they are applicable to.

As discussed in Section 11, both of these problems stein from difficulties in transliteration. Source language

constructs which cannot be reasonably transliterated are not supported. Further, transliteration methods which

work most of the time, but not all of the time. arc used as if they worked all of the time.

In addition to the problems above, when measured by the criteria of readability, the output of'most tr lnslators

is not particularly good. Although serviceable, the output produced seldom comes anywhere near the goal of

being what the programmers would have written had they been writing in the target language.

I)ue to the difficulties above, it is not accurate to refer to typical source-to-source translation systems as

aulomatic systems. It is more accurate to describe them as human-assisted translation systems. In order to obtain

correct (let alone aesthetic) output. human intervention is usually required. The user has to edit the source

program (to remove untranslatable constructs) and/or the target program (to correct errors and improve the

translation).

As a straightforward example of a translator, consider the Lisp 1.6 to lntcrlisp translator implemented by

Sarnet 21. This translator operates purely by transliteration. It does no refinement. Although reasonably

efficient output is produced, the translator makes no attempt to create aesthetic output. In particular, there is no

*" attempt to create lnterlisp-style oUtput. Rather, a set of functions is defined in Interlisp which, as much as

*. possible, allows Interlisp to simulate Lisp 1.6. For example, instead of translating the source program into

Interlisp syntax, the Interlisp reader is modified so that it can read in a program in Lisp 1.6 syntax. In 12!], Samet

identifies a number of features of Lisp 1.6 which his translator cannot handle. The user is required to edit the

source program in order to eliminate these features. Samet also describes several features of I-isp 1.6 Ahich are

translated in ways which are often, but not always, correct. The translation produced has to be carefully tested in

order to check that these over-simple transliterations have not led to any problems.

At first glance. it might appear that translation bctweecn two dialects of' I.isp should be easy. liow ever, this is
not the case. In fact, I.isp supports a number of features which are spectacularly difficult to translate. For

example. a Ilisp program can construct a new L.isp program and then execute this new program. Consider a

Iisp 1.6 program which constructs a Lisp 1.6 program and then calls it as a subroutine. The program would have

to he translated into an Interlisp prograInI which constructs an Interlisp program. It is xcry unlikelv that iliis kind

of ir,insl.ition cold be performcd wilhout using abstraction and reimplomentalion oflthe most po erflol kind.

l i. il, t i ',i'l ), 1.1r, 0 ,,. lt' l be I +l l v"-,l u .Ip ti llll' ile o i' Id hK.' I ll,'o liii. I ik 1 i' t
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reiadahle OutPut. I lowever, it deliberately attempts to creic I'olt- IC tpl/it as opposed to I isp-stylc iulptl. ,'.a'

The translation is supported by a set of functions which ,11h)m I.isp to simtulaLc the I0r1r,ii r1n Ime cnv ofi1nmeolt.

'Ihis .a pproach introduces a significant overhead which causes a translated program to 1*1111 several tLncs slow,'r

than the Fortran source program. Pitnian's translator is far sUpcrior to Samnet's tiatslator in that, except for onoe or

tvso very obscure features, all of the features of Fortran are translated correctly all of tie time.

A third translator in this vein is the Fortran to Jovial tranuslator implemented by Boxer 141. I ike the translators -

aho e. it operates purely by transliteration. 'he output of the translator is not intended for huLan consumption

and no attempt is made to make it particularly readable or tO render it in Jo, ial-st.ie. (The examples in 141

m dic.tc that the output is similar in style to the Ada shown in Fig. 3.) The translator only handles a subset of

Fortran. It succeeds in translating from 90% to 100% of the typical input module. User intervention is required to

complcte the translation.

The I isp to Fortran translator developed by Boyle 15] is interesting because it is based on the transformational

approach discussed in the last subsection. The translator handles an applicative subset of I isp which does not

include such hard to translate features as the ability to create and executc new ILisp code. Readability is not a goal

of the translation. Rather, readability of the output is abandoned in fa or of producing reasonably efficient

Fortran code. As discussed in [51, this translator is perhaps best thought of as a compiler of lisp into Fortran

rather than a source-to-source translator.

BIole',s translator operates by transliterating the Lisp source into an extension of Fortran and then %

transforming this extended Fortran into ordinary Fortran. The transformation process is controlled by dividing it

into a number of phases. Each phase applies transformations selected fiom a small set. The transformations

wt1iai e_:,,ch set are chosen so that conflicts between transformations will not arise.

Blovle's translator is successful not because it has solved the problems faced by very high level language

cornpilers, but rather because it succeeds in avoiding them. First, compared to SFT'L.. Gist, and V, Lisp is not very

abirvct. Therefore there are fewer complex design decisions which have to be made. Second. the design

d,. i .is are small enough in number that it is possible to find a fixed set ofchoices which works reasonably well

for tll of the Lisp programs being translated. These fixed choices are embedded in the translator through the

chii, of phases and transformations. L.ists are always implemented the same way. Recursion is always simulated

ir, ,:inie way. I his leads to the production of Fortran programs which are reasonahly efficient, but typically

fr frf i optimally efficient. 0

C ,,;,',rci,/v A vailable Source-to-Source Translators

1i iddition to the in-house translation systems described above, a number of translators are commercially

a a .hl,. One area where several translators are available is translating between assembler languages for \airious

mi. r ocevors. [lhe discussion in 1251 compares three conimnercial available tronaslators between 8080 asisembler

: i'etolbler. An in-house ttenipt at a translltor between /8l0 al, r .1i1d MC'81) asvenih'r is

,-/
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and do little or no refinemcnt. They all operate on only a suibset of tile source laigo-iage ;I11d us" "imlsplNic%

transliterations " hich are not correct in all contexts. I luman intervention is otlen rcquiired in ordc io obtain

Correct output. The translations produced are also quite incfficient, consisting of froin 3 to 0 times as n.y

instructions as the source. One of' the 8080 to 8086 translators (X1 1'86 from I)igital Research Inc.) ses global

data and control flow analysis in order to guide the choice of transliteration for instructions. It prod cs output

which is significantly more efficient and more often coriect than the other translators.

Another area where a number of translators arc available is translating between various languages used for

business data processing (e.g., Cobol, RPGII, and P./I). Numerous translators exist (for example, sec 1311.1 321).

Substantive information about the internal operation of these translators is hard to obtain, however several things

are clear from their external descriptions. They do not handle the whole source language. In general, the\ only

succeed in translating 90% to 95% of typical source programs. They do not always produce correct output.

(In 1321, the user is specifically instructed to test and debug the translations produced.) Fxmples suggest that the

output is not particularly readable, and that the output was probably created primarily through transliteration.

('ode Restructuring

An interesting subcategor (f source-to-source translators is systems which translate a program from a

language back into the same language. The goal of these systems is to create output which is more readable than

the input. In particular, these systems typically seek to render unstructured source program. in a structured form.

Gi\ en that the source and target languages are the same, it is a relati\ely straightforward matter to make su re that

the entire source language is handled correctly. lowever, it is far from straightforward to produce output which

really is significantly more readaible than the input. Many of these systems are little more than pretty printers and

are of marginal use. Howcver. at least one system (Rccoder [71) is a true translator and creates highly structured

output.

Recoder operates on Cobol programs in three stages. The first stage creates a flow chart-like graph

representing the source program. The key feature of the graph representation is that all control flow is

represented by explicit arcs which are independent of the Cobol constructs which were originally used to

implement the control flow. The second stage applies correctness-preserving transfOnnations to the graph in

order to rearrange the graph into a structured form. The third stage creates a new Cobol program based on the

rearranged graph.

Recoder represents a step toward the abst ._Ldon and reimplementation approach because the abstraction

which it uses is clearly the driving force behind the translation. However, the step is strictly limited b a number

of factors. The graph representation used is not very abstract. The only abstraction is away from particular

control flow constructs. No attempt is made to recognize the algorithms being used in the source program or to

abstract away from them.

%.
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\.ia,~l / ,migupagc Translation

vi interesting area which is closely related tu proraill t1m1 slatioln is natural lanlglAge translation. Work (in

L Iitiage translation started by using transliterition and, ii d (JUCs [Or high quality outttput, is 1o, nloviflg

ii hC 111rCctUO11 of translation via abstraction and reinmplcmentation.

\ m st all of the natural language translation systems which arc in actual regular use today operate via

r'teItration and refinement (see [261). In general, these systems produec OUtlut which is very rough, but which

I, rcdihle to a person who is familiar with the subject area. A good example of such a system is the Palm

,,,,,, -, 12(1 which translates from Spanish to English.

i:ho operates by transliterating the source text on a sentence by sentence basis. This transliteration is carried

oult for the most part on a word by word basis with a siniall amount of inter-word analysis to take care of issues

such as promiding correct translations for idioms, and rearranging the adjectives in a noun phrase. (Adjectives

tbllov nouns in Spanish whereas they precede nouns in l-nglish). The practicality of this kind of transliteration

depends heavil, oi a number of convenient correspondences between the basic structure of Spanish and English

(c.g7.. Lhe near. idcnticality of word order, and the fact that Spanish pronouns are more heavily marked for gender

thatn I-nglhih pronouns).

',tho is not capable of refining the English it produces. Manual post-editing is required in order to generate ,in

,icccpt..hlc translation. The biggest weaknesses of Paho is that it ktows ver y little about syntax and nothing about S

tht2 ir,,t n i, ofi the sentences being translated. Further, it has no knowledge of interactions between sentences.

In the quest for higher quality translations than the ones generated by systems like Paho, translators are now

hcin, de,.lQuped which operate more in the vein of abstraction and reimplementation. A good example of such a

trinI,'it)r is the Furotra system 1151 ,hich is currently being developed to translate bct,.een the major western

l-ur',pr,n languages. Eurotra uses semantically annotated syntactic parse trees as an abstract representation for

the senences being translated. Analysis (abstraction) and synthesis (reimplementation) components convert

.,011Cc languages into parse trees and parse trees into target languages respectively.

1-iritra is not a true abstraction and reimplementation system because the annotated parse trees are not

indcncndcnt of the source and target languages. Procedural trunfser comlpoetils are required in order to convert a

tn C ' Igat.ge specific parse tree into a target language parse tree.

h I,, expected that IFurotra will produce significantlv better oUtput than Pah. tt1owcer, it is expected that

I u. lla, ill still fall short of high quality translation. In particular, although Furotra has much imore syntactic

undti statnding than Palh. its semantic and inter-sentential understanding is still quite weak.

In order to achieve high quality translation, natural language translation systems have to be able to obtain an

in-dClth understanding of the text being translated. One approach to this is the recent work on kiowltcge-1ased

,iiti tit, ran. Iaiion (see 181). This work has succeeded in demonstrating natural language translation \iaA

;ihy r:ittn tid rcimplnmentaution. The abstrict desclpion used by this appirlach is a langutage indtlpdent

I " . I l1 i t ,1nw ll i l lp i l l,.k ox i ii ( l i KW (t W I Hoelill I, .ll li l 1 'il i '-.lt- ill ;i li,,

z.1
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%, meaning in the target languagc using the syntactic structure te ,, a guide for "ha I to (,ay whl.

Although know ledge-based m~achine translation holds die promise of generating %er) high qu,)ity output,

more work has to be done before a translator following this approach will be practical. In particular, as With

translation via abstraction and reimplementation in general, there is a significant prohle1m with incompleteness.

Considerable further research has to be done before it will be possible to achieve anywhere near a complete

understanding of arbitrary passages of source text. However, perfection is not required. I luman ti ,,,,lators are

unable to translate technical texts unless they understand the technical area being discussed.
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